Inference of gene regulatory network (GRN) from gene expression profiles has been a central problem in systems biology and bioinformatics in the past decades. The tremendous emergency of single-cell RNA sequencing (scRNA-seq) data brings new opportunities and challenges for GRN inference: the extensive dropouts and complicated noise structure may also degrade the performance of contemporary gene regulatory models. Thus, there is an urgent need to develop more accurate methods for gene regulatory network inference in single-cell data while considering the noise structure at the same time. In this paper, we extend the traditional structural equation modeling (SEM) framework by considering a flexible noise modeling strategy, namely we use the Gaussian mixtures to approximate the complex stochastic nature of a biological system, since the Gaussian mixture framework can be arguably served as a universal approximation for any continuous distributions. The proposed non-Gaussian SEM framework is called NG-SEM, which can be optimized by iteratively performing Expectation-Maximization algorithm and weighted least-squares method. Moreover, the Akaike Information Criteria is adopted to select the number of components of the Gaussian mixture. To probe the accuracy and stability of our proposed method, we design a comprehensive variate of control experiments to systematically investigate the performance of NG-SEM under various conditions, including simulations and real biological data sets. Results on synthetic data demonstrate that this strategy can improve the performance of traditional Gaussian SEM model and results on real biological data sets verify that NG-SEM outperforms other five state-of-the-art methods.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bib/bbad369DOI Listing

Publication Analysis

Top Keywords

gene regulatory
16
regulatory network
12
structural equation
8
equation modeling
8
network inference
8
inference single-cell
8
noise structure
8
sem framework
8
gaussian mixture
8
real biological
8

Similar Publications

Although not essential for their growth, the production of secondary metabolites increases the fitness of the producing microorganisms in their natural habitat by enhancing establishment, competition, and nutrient acquisition. The Gram-positive soil-dwelling bacterium, , produces a variety of secondary metabolites. Here, we investigated the regulatory relationship between the non-ribosomal peptide surfactin and the sactipeptide bacteriocin subtilosin A.

View Article and Find Full Text PDF

CASK, a MAGUK family scaffold protein, regulates gene expression as a transcription co-activator in neurons. However, the mechanism of CASK nucleus translocation and the regulatory function of CASK in myeloid cells remains unclear. Here, we investigated its role in H5N1-infected macrophages.

View Article and Find Full Text PDF

Background: Macrophages play a dual role in the tumor microenvironment(TME), capable of secreting pro-inflammatory factors to combat tumors while also promoting tumor growth through angiogenesis and immune suppression. This study aims to explore the characteristics of macrophages in lung adenocarcinoma (LUAD) and establish a prognostic model based on macrophage-related genes.

Method: We performed scRNA-seq analysis to investigate macrophage heterogeneity and their potential pseudotime evolutionary processes.

View Article and Find Full Text PDF

Integrated single-cell and bulk transcriptome analysis of R-loop score-based signature with regard to immune microenvironment, lipid metabolism and prognosis in HCC.

Front Immunol

January 2025

National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.

Background: Hepatocellular carcinoma (HCC) is one of the most prevalent causes of cancer-related morbidity and mortality worldwide. Late-stage detection and the complex molecular mechanisms driving tumor progression contribute significantly to its poor prognosis. Dysregulated R-loops, three-stranded nucleic acid structures associated with genome instability, play a key role in the malignant characteristics of various tumors.

View Article and Find Full Text PDF

Background: Breast cancer remains a leading cause of mortality among women, driven by the molecular complexity of its various subtypes. This study aimed to investigate the differential expression of genes and miRNAs involved in the PI3K/AKT/mTOR signaling pathway, a critical regulator of cancer progression.

Methods: We analyzed tumor tissues from five breast cancer subtypes-luminal A, luminal B HER2-negative, luminal B HER2-positive, HER2-positive, and triple-negative breast cancer (TNBC)-and compared them with non-cancerous tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!