Acid mine drainage (AMD) is generally outlined as one of the largest environmental concerns, characterized by very low pH value of mine waste, heavy metals and high sulphate content. This extremely hostile environment reduces plant ability to develop and grow. Present study focuses on a silver birch (Betula pendula Roth), a pioneer species that grows on an extremely hostile gold mine waste, to investigate the bioaccumulation of rare metals (thallium (Tl) and indium (In)), as well as nine other more common heavy metals (bismuth (Bi), cadmium (Cd), cobalt (Co), copper (Cu), lead (Pb), manganese (Mn), nickel (Ni), silver (Ag) and zinc (Zn)), and to asses phytoextraction and phytostabilization potential of silver birch. Additionally, parameters determining AMD process and overall contamination (pH, electrical conductivity (EC), sulphates (SO), arsenic (As), iron (Fe), oxidation-reduction potential (ORP), turbidity, dissolved oxygen (DO), total dissolved solids (TDS), acidity, hardness, X-ray diffraction (XRD) and radioactivity) were determined in mine waste and drainage water samples. To assess the heavy metals bioaccumulation and mine waste status, statistical geochemical indices were determined: bioaccumulation factor (BCF), pollution load index (PLI), geochemical abundance index (GAI) and exposure index (EI). The results show that silver birch bioaccumulates the essential elements Cu, Ni, Mn and Zn, and the nonessential elements Tl (average BCF = 24.99), In (average BC = 23.01) and Pb (average BCF = 0.84). Investigated mine waste was enriched by Bi, Ag and Cd according to positive values of GAI index. Present research provides a novel insight into bioaccumulation of nonessential heavy metals in silver birches who grow on the extremely hostile mine waste, and they exhibit significant phytoremediation potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10653-023-01774-7 | DOI Listing |
Materials (Basel)
January 2025
Faculty of Science, University of the Fraser Valley, Abbotsford, BC V2S 7M8, Canada.
This study presents a novel FeO/C composite material synthesized from red mud through a process of magnetic roasting and separation. The research explores the impact of FeO/C dosages, sodium persulfate (PS) concentrations, and initial solution pH on the chemical oxygen demand (COD) removal efficiency using Acid Orange 7 as a model pollutant. Optimal conditions were identified as 3 g/L FeO/C, 20 mM PS, and an initial pH of 2, achieving a 94.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico.
The waste generated during metal mining activities contains mixtures of heavy metals (HM) that are not biodegradable and can accumulate in the surrounding biota, increasing risk to human and environmental health. Plant species with the capacity to grow and develop on mine tailings can be used as a model system in phytoremediation studies. (L.
View Article and Find Full Text PDFEnviron Pollut
January 2025
School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
J Hazard Mater
January 2025
Department of Geological Sciences & Geological Engineering, Queen's University, Kingston, ON K7L 3N6, Canada. Electronic address:
Secondary minerals in mine waste materials impose strong controls on water quality by scavenging solutes of concern. This study investigates the mineralogical and compositional characteristics of secondary Fe(oxy)hydroxides and Ca-sulfates, two globally ubiquitous secondary precipitates, in weathered mine waste rock. Bulk analyses show that Si, Ca, Fe, Al, and S-bearing primary phases were the most abundant in the entire samples, but up to a few wt% of secondary Fe(oxy)hydroxides and Ca-sulfates were present as well.
View Article and Find Full Text PDFJ Environ Radioact
January 2025
Health Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
India's road construction is vital for its infrastructure growth, requiring approximately 20,000 tons of high-quality aggregates per kilometer - materials that are increasingly scarce, leading to higher costs and delays. The industrial sector, a cornerstone of the Indian economy, also struggles with waste management. Earlier studies suggested that industrial waste can be used in road construction materials however, the radiological considerations were not focused.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!