The dysregulation of trace elements in the brain, which can be caused by genetic or environmental factors, has been associated with disease and compromised mobility. Research regarding trace elements and motor function has focused mainly on the basal ganglia, but few studies have examined the olfactory bulb in this context. Diets high in fat have been shown to have consequences of dysregulated iron and manganese in the brain and disrupted motor activity. The aim of our study was to examine the relationship between mobility and trace element disruption in the olfactory bulb in male and female C57BL/6J and DBA/2J mice fed a high-fat diet. Mobility was significantly reduced in male C57BL/6Js, but the correlation between iron and manganese in the olfactory bulb with velocity, distance travelled, and habituation was not statistically significant. However, there appears to be an overall pattern of a high-fat diet having a statistically significant impact individually on elevated iron and manganese in the olfactory bulb, reduced velocity, reduced distance travelled, and reduced habituation mainly in the male C57BL/6J strain. We found similar trends within the scientific literature to suggest that dysregulated trace element status in the olfactory bulb may be related to motor function in both humans and animals and that males may be more susceptible to the negative outcomes. Our findings contribute new information regarding the impact of diet on the brain, behavior, and potential connection between trace element dysregulation in the olfactory bulb with mobility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12011-023-03911-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!