Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In recent years, a growing role in digital technologies has been filled by model-based digital twinning. A digital twin produces a one-to-one mapping of a physical structure, operating in the digital domain. Combined with sensor technology and analytics, a digital twin can provide enhanced monitoring, diagnostic, and optimization capabilities. This research harnesses the significant capabilities of digital twining for the unmitigated challenge of fault type classification of a locomotive parking brake. We develop a digital twin of the locomotive parking brake and suggest a method for fault type classification based on the digital twin. The diagnostic ability of the method is demonstrated on a large experimental dataset.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589247 | PMC |
http://dx.doi.org/10.1038/s41598-023-45204-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!