The present study investigates the free vibration behavior of rotating beams made of functionally graded materials (FGMs) with a tapered geometry. The material properties of the beams are characterized by an exponential distribution model. The stiffness and mass matrices of the beams are derived using the principle of virtual energy. These matrices are then evaluated using three different beam theories: Bernoulli-Euler (BE) or Classical Beam Theory (CBT), Timoshenko (T) or First-order Shear Deformation Theory (FSDT), and Reddy (R) or Third-order Shear Deformation Theory (TSDT). Additionally, the study incorporates uncertainties in the model parameters, including rotational velocity, beam material properties, and material distribution. The mean-centered second-order perturbation method is employed to account for the randomness of these properties. To ensure the robustness and accuracy of the probabilistic framework, numerical examples are presented, and the results are compared with those obtained through the Monte Carlo simulation technique. The investigation explores the impact of critical parameters, including material distribution, taper ratios, aspect ratio, hub radius, and rotational speed, on the natural frequencies of the beams is explored within the scope of this investigation. The outcomes are compared not only with previously published research findings but also with the results of 3-Dimensional Finite Element (3D-FE) simulations conducted using ANSYS to validate the model's effectiveness. The comparisons demonstrate a strong agreement across all evaluations. Specifically, it is observed that for thick beams, the results obtained from FSDT and TSDT exhibit a greater agreement with the 3D-FE simulations compared to CBT. It is shown that the coefficient of variation (C.O.V.) of first mode eigenvalue of TSDT, FSDT and CBT are approximately identical for random rotational velocity and discernible deviations are noted in CBT compared to FSDT and TSDT in the case of random material properties. The findings suggest that TSDT outperforms FSDT by eliminating the need for a shear correction coefficient, thereby establishing its superiority in accurately predicting the natural frequencies of rotating, tapered beams composed of FGMs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589254 | PMC |
http://dx.doi.org/10.1038/s41598-023-44411-0 | DOI Listing |
Adv Simul (Lond)
January 2025
RCSI SIM Centre for Simulation Education and Research, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
Simulation-based education (SBE) has become an integral part of training in health professions education, offering a safe environment for learners to acquire and refine clinical skills. As a non-ionising imaging modality, ultrasound is a domain of health professions education that is particularly supported by SBE. Central to many simulation programs is the use of animal models, tissues, or body parts to replicate human anatomy and physiology.
View Article and Find Full Text PDFJ Assoc Res Otolaryngol
January 2025
Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, 3010, Freiburgstrasse, Bern, Switzerland.
Purpose: There are challenges in understanding the biomechanics of the human middle ear, and established methods for studying this system show significant limitations. In this study, we evaluate a novel dynamic imaging technique based on synchrotron X-ray microtomography designed to assess the biomechanical properties of the human middle ear by comparing it to laser-Doppler vibrometry (LDV).
Methods: We examined three fresh-frozen temporal bones (TB), two donated by white males and one by a Black female, using dynamic synchrotron-based X-ray microtomography for 256 and 512 Hz, stimulated at 110 dB and 120 dB sound pressure level (SPL).
Mikrochim Acta
January 2025
Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, 516081, Guangdong, China.
Self-supported ultrathin PtRuMoCoNi high-entropy alloy nanowires (HEANWs) were synthesized by a one-pot co-reduction method, whose peroxidase (POD)-like activity and catalytic mechanism were elaborated in detail. As expected, the PtRuMoCoNi HEANWs showed excellent POD-like activity. It can quickly catalyze the oxidization of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB through decomposition of HO to superoxide radicals.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria.
Objective: Titanium surface modifications improve osseointegration in dental and orthopedic implants. However, soft tissue cells can also reach the implant surface in immediate loading protocols. While previous research focused on osteogenic cells, the early response of soft tissue cells still needs to be better understood.
View Article and Find Full Text PDFSci Rep
January 2025
School of City and Architecture Engineering, Zaozhuang University, Zaozhuang, 277160, Shandong, China.
To study the enhancement effect of carbon nanotubes (CNTs) on the splitting tensile properties of foamed concrete backfill in which cement and fly ash were used as the cementitious materials and natural sand was used as the aggregate, specimens of CNT-modified foamed concrete backfill were prepared. Brazilian splitting tests were used to investigate the splitting tensile strength of the CNT-modified foamed concrete backfill, and the digital speckle correlation method was used to analyze the stress field characteristics and crack expansion law of the specimens during splitting tensile testing. The stress-strain characteristics and energy dissipation laws of the backfill were studied at various static loading rates, and a relationship between the splitting tensile strength, ultimate strain, and loading rate was established.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!