The popularity of quinoa seeds has increased in the last decade due to their high nutritional value and natural gluten-free composition. Consumption of new proteins may pose a risk of introducing new allergies. In the present study the immunogenicity and sensitising capacity of quinoa proteins were assessed in a dose-response experiment in Brown Norway rats in comparison to proteins from spinach and peanut. Cross-reactivity between quinoa proteins and known allergens was evaluated by in silico analyses followed by analyses with 11 selected protein extracts and their anti-sera by means of ELISAs and immunoblotting. Further, an in vitro simulated gastro-duodenal digestion was performed. Quinoa proteins were found to have an inherent medium to high immunogenicity and sensitising capacity, being able to induce specific IgG1 and IgE levels higher than spinach but lower than peanut and elicit reactions of clinical relevance similar to peanut. Quinoa proteins were generally shown to resist digestion and retain capacity to bind quinoa-specific antibodies. Quinoa proteins were shown to be cross-reactive with peanut and tree nut allergens as high sequence homology and antibody cross-binding were demonstrated. Present study suggests that quinoa pose a medium to high level of allergenicity that should be further investigated in human studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2023.114118DOI Listing

Publication Analysis

Top Keywords

quinoa proteins
24
quinoa
8
proteins
8
brown norway
8
norway rats
8
immunogenicity sensitising
8
sensitising capacity
8
medium high
8
allergenicity evaluation
4
evaluation quinoa
4

Similar Publications

The MYB-bHLH-NRAMP module modulates the cadmium sensitivity of quinoa by regulating cadmium transport and absorption.

J Hazard Mater

January 2025

Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China. Electronic address:

Cadmium (Cd) is one of the most dangerous environmental pollutants and is easily absorbed by food crops. Quinoa is a kind of coarse grain crop with rich nutrition and strong stress resistance, which is easy to accumulate Cd. The increasingly serious soil Cd pollution poses a serious threat to the food safety of quinoa.

View Article and Find Full Text PDF

Extruded Quinoa Flour Applied for the Development of Gluten-Free Breads: a Technological, Sensory and Microstructural Approach.

Plant Foods Hum Nutr

January 2025

Laboratorio de Investigación en Funcionalidad y Tecnología de Alimentos (LIFTA), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina.

Quinoa flour due to its nutritional and sensory characteristics could be used as an ingredient to improve the nutritional and technological properties of gluten-free bread. Furthermore, the application of hydrothermal processes such as extrusion can enhance their native properties. Hence, our objective was to evaluate how the incorporation of extruded quinoa flours (EQFs) affects the technological, sensory and nutritional quality of gluten-free bread.

View Article and Find Full Text PDF

Quinoa () is an Andean allotetraploid pseudocereal crop with higher protein content and balanced amino acid composition in the seeds. Ammonium (NH), a direct source of organic nitrogen assimilation, mainly transported by specific transmembrane ammonium transporters (), plays important roles in the development, yield, and quality of crops. Many and their functions have been identified in major crops; however, no systematic analyses of and their regulatory networks, which is important to increase the yield and protein accumulation in the seeds of quinoa, have been performed to date.

View Article and Find Full Text PDF

In Vitro Investigation of the Anti-Hepatocellular Carcinoma Activity of Peptides Derived From Quinoa (Chenopodium quinoa Willd) Bran.

Plant Foods Hum Nutr

January 2025

Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, 030006, Taiyuan, China.

Article Synopsis
  • Hepatocellular carcinoma (HCC) is a common and aggressive cancer with high recurrence rates, making new treatment options crucial.
  • Quinoa bran protein hydrolysate (QBPP) has been found to effectively inhibit the growth of HCC cells while showing little toxicity to normal liver cells.
  • QBPP works by inducing apoptosis and preventing HCC cell migration, suggesting it could be a promising dietary supplement for HCC prevention and treatment.
View Article and Find Full Text PDF

Carboxylated nanocellulose from quinoa husk for enhanced protease immobilization and stability of protease in biotechnological applications.

Sci Rep

January 2025

Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), P. O. Box: 31535-1897, Karaj, Iran.

Herein, an efficient and feasible approach was developed to oxidize low-cost agricultural waste (quinoa husk, QS) for the synthesis of carboxylated nanocellulose (CNC). The as-prepared rod-like CNCs (average diameter of 10 nm and length of 103 nm) with a high specific surface area (173 m/g) were utilized for the immobilization of a model protease enzyme (PersiProtease1) either physically or via covalent attachment. For chemical immobilization, CNCs were firstly functionalized with N, N'-dicyclohexylcarbodiimide (DCC) to provide DCNCs nanocarrier which could covalently bond to enzyme trough nucleophilic substitution reaction and formation of the amide bond between DCNCs and enzyme.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!