This multiscale study aimed to evaluate the effects of different salts (NaCl, KCl, MgCl, and CaCl) on the foaming capacity (FC) and foam stability (FS) of model protein systems (MPS) for infant formula via changes in surface and structural properties. Our results showed that the FC and FS of MPS were increased with the addition of NaCl, KCl, and MgCl, whereas CaCl significantly decreased FC (79.5 ± 10.6%) and increased FS (93.2 ± 2.2%). The surface hydrophobicity was increased and the net charge and surface tension were reduced after the addition of salts. Structural analysis revealed the reduction of intensity of intrinsic fluorescence spectroscopy and UV absorption, and the conversion of α-helix into β-strand, which was attributed to protein agglomeration. Additionally, MgCl and CaCl exhibited larger size and lower net charge compared with NaCl and KCl, indicating a greater ability to bind to charged amino acids and form larger aggregates. Correlation analysis indicated that FC was positively related to adsorbed protein and β-turn and negatively correlated with particle size. In addition, FS showed a positive correlation with β-strand, apparent viscosity, and zeta potential. However, it exhibited a negative correlation with β-turn, α-helix, and sulfhydryl content. These results provide a theoretical reference for further understanding of the effect of salts on the foaming properties of MPS.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2023-24080DOI Listing

Publication Analysis

Top Keywords

nacl kcl
12
mgcl cacl
12
salts foaming
8
foaming properties
8
model protein
8
protein systems
8
infant formula
8
kcl mgcl
8
properties mps
8
net charge
8

Similar Publications

Partial oxidation of methane (POM) is achieved by forming air-methane microbubbles in saltwater to which an alternating electric field is applied using a copper oxide foam electrode. The solubility of methane is increased by putting it in contact with water containing dissolved KCl or NaCl (3%). Being fully dispersed as microbubbles (20-40 µm in diameter), methane reacts more fully with hydroxyl radicals (OH·) at the gas-water interface.

View Article and Find Full Text PDF

Unraveling compound curing agent on protein characteristics and proteome changes of Nuodeng ham by TMT-labeled quantitative proteomics.

Food Chem

January 2025

College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; Livestock Product Processing and Engineering Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China. Electronic address:

To understand the effects of compound curing agent (60 % NaCl+40 % KCl + 90 mg/kg NaNO) on the protein characteristics and proteome of Nuodeng ham, the protein structure, oxidation, degradation, and proteomic changes of Nuodeng ham were analyzed. The results showed that the hydrophobic and disulfide bonds were the main forces to maintain the stability of the ham protein. The compound curing agent reduced protein oxidation and promoted the transformation of the α-helix structure to the β-sheet structure.

View Article and Find Full Text PDF

The electrochemical conversion of CO into high value-added carbon materials by molten salt electrolysis offers a promising solution for reducing carbon dioxide emissions. This study focuses on investigating the influence of molten salt composition on the structure of CO direct electroreduction carbon products in chloride molten salt systems. Using CaO as a CO absorber, the adsorption principle of CO in LiCl-CaCl, LiCl-CaCl-NaCl and LiCl-CaCl-KCl molten salts was discussed, and the reasons for the different morphologies and structures of carbon products were analyzed, and it was found that the electrolytic efficiency of the whole process exceeded 85%.

View Article and Find Full Text PDF

In this paper, the enhancement of thermochemical energy storage by alkali metal chloride salts-doped Ca-based sorbents is revealed by experiments and DFT calculations. The results indicate that NaCl and KCl doping increases the reaction rate and cycle stability. Compared to CaO, the conversion of NaCl-CaO and KCl-CaO after one cycle is increased by 59.

View Article and Find Full Text PDF

Table olive processing implies losses of mineral nutrients and increased sodium levels due to using brine during fermentation and storage. This study investigated fortifying traditional table olives with mixtures of KCl, CaCl, and MgCl during packaging to enhance mineral content while reducing NaCl. This research analyses the distribution of cations between olives and brines and employed the Response Surface Methodology (RSM) to model mineral content and their contributions to the Reference Daily Intake (RDI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!