Nitrogen deposition raises temperature sensitivity of soil organic matter decomposition in subtropical forest.

Sci Total Environ

Department of Environmental Chemistry, University of Kassel, 37213 Witzenhausen, Germany; Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia; Tyumen State University, 6 Volodarskogo Street, 625003 Tyumen, Russia. Electronic address:

Published: January 2024

Subtropical ecosystems are strongly affected by nitrogen (N) deposition, impacting soil organic matter (SOM) availability and stocks. Here we aimed to reveal the effects of N deposition on i) the structure and functioning of microbial communities and ii) the temperature sensitivity (Q) of SOM decomposition. Phosphorus (P) limited evergreen forest in Guangdong Province, southeastern China, was selected, and N deposition (factor level: N (100 kg N ha y (NHNO)) and control (water), arranged into randomized complete block design (n = 3)) was performed during 2.5 y. After that soils from 0 to 20 cm were collected, analyzed for the set of parameters and incubated at 15, and 25, and 35 °C for 112 days. N deposition increased the microbial biomass N and the content of fungal and Gram-positive bacterial biomarkers; activities of beta-glucosidase (BG) and acid phosphatase (ACP) also increased showing the intensification of SOM decomposition. The Q of SOM decomposition under N deposition was 1.66 and increased by 1.4 times than under control. Xylosidase (BX), BG, and ACP activities increased with temperature under N but decreased with the incubation duration, indicating either low production and/or decomposition of enzymes. Activities of polyphenol-(PPO) and peroxidases (POD) were higher under N than in the control soil and were constant during the incubation showing the intensification of recalcitrant SOM decomposition. At the early incubation stage (10 days), the increase of Q of CO efflux was explained by the activities of BX, BQ, ACP, and POD and the quality of the available dissolved organic matter pool. At the later incubation stages (112 days), the drop of Q of CO efflux was due to the depletion of the labile organic substances and the shift of microbial community structure to K-strategists. Thus, N deposition decoupled the effects of extracellular enzyme activities from microbial community structure on Q of SOM decomposition in the subtropical forest soil.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.167925DOI Listing

Publication Analysis

Top Keywords

som decomposition
20
organic matter
12
nitrogen deposition
8
temperature sensitivity
8
soil organic
8
decomposition subtropical
8
subtropical forest
8
showing intensification
8
microbial community
8
community structure
8

Similar Publications

Cereal-legume intercropping stimulates straw decomposition and promotes soil organic carbon stability.

Sci China Life Sci

January 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.

Increasing carbon (C) sequestration and stability in agricultural soils is a key strategy to mitigate climate change towards C neutrality. Crop diversification is an initiative to increase C sequestration in fields, but it is unclear how legume-based crop diversification impacts the functional components of soil organic carbon (SOC) in dryland, including the formation and transformation of particulate organic carbon (POC) and mineral-associated organic carbon (MAOC). We investigated the decomposition of straw residues, the fate of photosynthesized C, as well as the formation of MAOC and POC fractions using an in situC labeling technique in the soybean-wheat intercropping, soybean-maize intercropping and their respective monocropping systems, with and without cover crops.

View Article and Find Full Text PDF

Thawing Arctic permafrost can induce hydrologic change and alter redox conditions, shifting the balance of soil organic matter (SOM) decomposition. There remains uncertainty about how soil saturation and redox transitions impact dissolved and gas phase carbon fluxes, and efforts to link hydrobiogeochemical processes to ecosystem-scale models are limited. This study evaluates SOM decomposition of Arctic tundra soils using column experiments, water chemistry measurements, microbial community analysis, and a PFLOTRAN reactive transport model.

View Article and Find Full Text PDF

Process-based quantitative description of carbon biogeochemical cycle in a reclaimed water intake area.

Environ Res

December 2024

State Key Laboratory of Nuclear Resources and Environment, Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, Jiangxi, 330013, P.R. China.

Reclaimed water plays a pivotal role in addressing water scarcity and pollution. The carbon (C) cycle significantly impacts aquatic ecosystems and water quality, yet the C biogeochemical cycle in nutrient-rich reclaimed water remains enigmatic. This study focuses on reclaimed water, developing a conceptual biogeochemical mass balance model to examine C cycling and assess the C budget in the highly eutrophic Jian and Chaobai rivers.

View Article and Find Full Text PDF

Impact of different continuous fertilizations on the antibiotic resistome associated with a subtropical triple-cropping system over one decade.

Environ Pollut

December 2024

Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Academy of Agricultural Sciences, Guangzhou, China. Electronic address:

The prevalence of antibiotic resistance genes (ARGs) in agricultural soils has garnered significant attention. However, the long-term impacts of various nitroge (N)-substitution fertilization regimes on the distribution of soil ARGs and their dominant drivers in a subtropical triple-cropping system remain largely unexplored. This study employed a metagenomic approach to analyze soil ARGs, microbial communities, mobile genetic elements (MGEs), and viruses from a maize-maize-cabbage rotation field experiment with five different fertilization regimes.

View Article and Find Full Text PDF
Article Synopsis
  • Soil organic matter (SOM) is crucial for reducing greenhouse gas emissions and supporting global climate, carbon cycles, and biodiversity.
  • Coastal wetland soils, which constitute one-third of SOM, are eroding rapidly due to rising sea levels, highlighting a gap in research on carbon sequestration in these areas compared to upland soils.
  • Using solid-state nuclear magnetic resonance (ssNMR), the study reveals that some molecular structures in wetland soils have been preserved for over 1,000 years, but these structures are declining in abundance as decomposition and repolymerization processes occur, making coastal wetland SOM increasingly vulnerable to environmental changes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!