South Asia's coastlines are the most densely inhabited and economically active ecosystems have already begun to shift due to climate change. Over the past century, climate change has contributed to a gradual and considerable rise in sea level, which has eroded shorelines and increased storm-related coastal flooding. The differences in estuary water quality over time, both seasonally and annually, have been efficiently controlled by changes in stream flow. Assessment requires digitized analytical platforms to lower the risk of catastrophes associated with climate change in coastal towns. To predict future changes in an area's vulnerability and waste planning decisions, a prospective investigation requires qualitative and quantitative scenarios. The paper concentrates on the development of a forecasting platform to evaluate the climate change and waste water impacts on the south coastal region of India. Due to the enhancement of Digitization, a multi-model ensemble combined with manifold learning is implemented on the multi-case models influencing the uncertainty probability rate of 23% and can be ignored with desired precaution on the coastal environmental. Because Manifold Learning Analysis results cannot be utilized directly in wastewater management studies because of their inherent biases, a statistical bias correction and meta-feature estimation have been implemented. Within the climate-hydrology modeling chain, the results demonstrate a wide range of expected changes in water resources in some places. Experimental statistics reveal that the forecasted rate of 91.45% will be the better choice to reduce the uncertainty of climatic change and wastewater management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2023.117355 | DOI Listing |
J Environ Manage
January 2025
CE3C-Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C2, Piso 5, 1749-016, Lisboa, Portugal. Electronic address:
Fires are increasingly affecting tropical biomes, where landscape-fire interactions remain understudied. We investigate the fire-proneness-the likelihood of a land use or land cover (LULC) type burning more or less than expected based on availability-in the Brazilian Atlantic Forest (AF). This biodiversity hotspot is increasingly affected by fires due to human activities and climate change.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Tetra Tech, Inc., P.O. Box 14409, Research Triangle Park, NC, 27709, United States. Electronic address:
Due to the recent improved availability of global and regional climate change (CC) models and associated data, the projected impact of CC on urban stormwater management is well documented. However, most studies are based on simplified design storm analysis and unit-area runoff models; evaluations of the long-term, continuous hydrologic response of extensive stormwater control measures (SCM) implementation under future CC scenarios are limited. Moreover, channel stability in response to CC is seldom evaluated due to the input data required to develop a long-term, continuous sediment transport model.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
Department of Medicine, Division of Occupational, Environmental and Climate Medicine, University of California, San Francisco; San Francisco, California, 94158United States.
Water scarcity is projected to affect half of the world's population, gradually exacerbated by climate change. This article elaborates from a panel discussion at the 2023 United Nations Water Conference on Addressing Water Scarcity to Achieve Climate Resilience and Human Health. Understanding and addressing water scarcity goes beyond hydrological water balances to also include societal and economic measures.
View Article and Find Full Text PDFAmbio
January 2025
Department of Biological Sciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, USA.
Curr Microbiol
January 2025
Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
Abies pindrow, a vital conifer in the Kashmir Himalayan forests, faces threats from low regeneration rates, deforestation, grazing, and climate change, highlighting the urgency for restoration efforts. In this context, we investigated the diversity of potential culturable seed endophytes in A. pindrow, assessed their plant growth-promoting (PGP) activities, and their impact on seed germination and seedling growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!