Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bacterial cellulose (BC), as a natural renewable polymer material, has the advantages of porous nanonetwork structure, high degree of polymerization, high purity, high crystallinity, excellent mechanical properties and biocompatibility. However, BC lacks antibacterial properties, which leads to the limitation of BC material in food packaging and medical materials. In this study, a new antibacterial material using the combination of montmorillonite (MMT), BC and exopolysaccharides (EPS) produced by Weissella confusa H2 was synthesized. Fourier infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) analysis showed that BC-EPS, BC-MMT and BC-EPS-MMT composite membranes conformed to the typical type I cellulose structure. Compared to BC membrane, scanning electron microscopy (SEM) showed that the porosity of BC-EPS, BC-MMT and BC-EPS-MMT composite membranes was low and compact. The physical properties of BC-EPS, BC-MTT and BC-EPS-MTT composite membranes showed lower water vapor transmittance. The BC-MTT and BC-EPS-MTT composite membranes exhibit a lower swelling ratio in 120 min. The thermal properties show that BC-EPS, BC-MTT and BC-EPS-MTT composite membranes have higher thermal stability (352 °C, 310 °C, 314 °C). Additionally, both BC-MMT and BC-EPS-MMT demonstrated strong inhibitory effects against various bacterial strains, including Staphylococcus aureus, Escherichia coli, Salmonella paratyphi A, and Bacillus subtilis. The exceptional properties exhibited by composite membranes establishes them as a highly promising option in the field of food packaging and medical material applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.127477 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!