A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biosynthesis and characterization of antibacterial bacterial cellulose composite membrane composed of montmorillonite and exopolysaccharides. | LitMetric

Biosynthesis and characterization of antibacterial bacterial cellulose composite membrane composed of montmorillonite and exopolysaccharides.

Int J Biol Macromol

Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China. Electronic address:

Published: December 2023

Bacterial cellulose (BC), as a natural renewable polymer material, has the advantages of porous nanonetwork structure, high degree of polymerization, high purity, high crystallinity, excellent mechanical properties and biocompatibility. However, BC lacks antibacterial properties, which leads to the limitation of BC material in food packaging and medical materials. In this study, a new antibacterial material using the combination of montmorillonite (MMT), BC and exopolysaccharides (EPS) produced by Weissella confusa H2 was synthesized. Fourier infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) analysis showed that BC-EPS, BC-MMT and BC-EPS-MMT composite membranes conformed to the typical type I cellulose structure. Compared to BC membrane, scanning electron microscopy (SEM) showed that the porosity of BC-EPS, BC-MMT and BC-EPS-MMT composite membranes was low and compact. The physical properties of BC-EPS, BC-MTT and BC-EPS-MTT composite membranes showed lower water vapor transmittance. The BC-MTT and BC-EPS-MTT composite membranes exhibit a lower swelling ratio in 120 min. The thermal properties show that BC-EPS, BC-MTT and BC-EPS-MTT composite membranes have higher thermal stability (352 °C, 310 °C, 314 °C). Additionally, both BC-MMT and BC-EPS-MMT demonstrated strong inhibitory effects against various bacterial strains, including Staphylococcus aureus, Escherichia coli, Salmonella paratyphi A, and Bacillus subtilis. The exceptional properties exhibited by composite membranes establishes them as a highly promising option in the field of food packaging and medical material applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.127477DOI Listing

Publication Analysis

Top Keywords

composite membranes
24
bc-mmt bc-eps-mmt
12
bc-mtt bc-eps-mtt
12
bc-eps-mtt composite
12
bacterial cellulose
8
food packaging
8
packaging medical
8
bc-eps bc-mmt
8
bc-eps-mmt composite
8
properties bc-eps
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!