Background: Hereditary haemochromatosis protein (HFE)-related haemochromatosis, an inherited iron overload disorder caused by insufficient hepcidin production, results in excessive iron absorption and tissue and organ injury, and is treated with first-line therapeutic phlebotomy. We aimed to investigate the efficacy and safety of rusfertide, a peptidic mimetic of hepcidin, in patients with HFE-related haemochromatosis.
Methods: This open-label, multicentre, proof-of-concept phase 2 trial was done across nine academic and community centres in the USA and Canada. Adults (aged ≥18 years) with HFE-related haemochromatosis on a stable therapeutic phlebotomy regimen (maintenance phase) for at least 6 months before screening and who had a phlebotomy frequency of at least 0·25 per month (eg, at least three phlebotomies in 12 months or at least four phlebotomies in 15 months) and less than one phlebotomy per month, with serum ferritin of less than 300 ng/mL and haemoglobin of more than 11·5 g/dL, were eligible. Patients initiated 24 weeks of subcutaneous rusfertide treatment within 7 days of a scheduled phlebotomy at 10 mg once weekly. Rusfertide doses and dosing schedules could be adjusted to maintain serum transferrin iron saturation (TSAT) at less than 40%. During rusfertide treatment, investigators were to consider the need for phlebotomy when the serum ferritin and TSAT values exceeded the patient's individual pre-phlebotomy serum ferritin and TSAT values. No primary endpoint or testing hierarchy was prespecified. Prespecified efficacy endpoints included the change in the frequency of phlebotomies; the proportion of patients achieving phlebotomy independence; change in serum iron, TSAT, serum transferrin, serum ferritin, and liver iron concentration (LIC) as measured by MRI; and treatment-emergent adverse events (TEAEs). The key efficacy analyses for phlebotomy rate and LIC were conducted by use of paired t tests in the intention-to-treat population, defined as all patients who received any study drug and who had pretreatment and at least one post-dose measurement. We included all participants who received at least one dose of rusfertide in the safety analyses. This trial is closed and completed and is registered with ClinicalTrials.gov, NCT04202965.
Findings: Between March 11, 2020, and April 23, 2021, 28 patients were screened and 16 (ten [63%] men and six [38%] women) were enrolled. 16 were included in analyses of phlebotomy endpoints and 14 for the LIC endpoint. 12 (75%) patients completed 24 weeks of treatment. The mean number of phlebotomies was significantly reduced during the 24-week rusfertide treatment (0·06 phlebotomies [95% CI -0·07 to 0·20]) compared with 24 weeks pre-study (2·31 phlebotomies [95% CI 1·77 to 2·85]; p<0·0001). 15 (94%) of 16 patients were phlebotomy-free during the treatment period. Mean LIC in the 14 patients in the intention-to-treat population was 1·4 mg iron per g dry liver weight (95% CI 1·0 to 1·8) at screening and 1·1 mg iron per g dry liver weight (95% CI 0·9 to 1·3) at the end of treatment (p=0·068). Mean TSAT was 45·3% (95% CI 33·2 to 57·3) at screening, 36·7% (24·2 to 49·2) after the pretreatment phlebotomy, 21·8% (15·8 to 27·9) 24 h after the first dose of rusfertide, 40·4% (27·1 to 53·8) at the end of treatment, and 32·6% (25·0 to 40·1) over the treatment duration. Mean serum iron was 24·6 μmol/L (95% CI 18·6 to 30·6), 20·1 μmol/L (14·8 to 25·3), 11·9 μmol/L (9·2 to 14·7), 22·5 μmol/L (15·9 to 29·1), and 19·0 μmol/L (15·3 to 22·6) at these same timepoints, respectively. Mean serum ferritin was 83·3 μg/L (52·2 to 114.4), 65·5 μg/L (32·1 to 98·9), 62·8 μg/L (33·8 to 91·9), 150·0 μg/L (86·6 to 213.3), and 94·3 μg/L (54·9 to 133.6) at these same timepoints, respectively. There were only minor changes in serum transferrin concentration. 12 (75%) patients had at least one TEAE, the most common of which was injection site pain (five [31%] patients). All TEAEs were mild or moderate in severity, except for a serious adverse event of pancreatic adenocarcinoma, which was considered severe and unrelated to treatment and was pre-existing and diagnosed 21 days after starting rusfertide treatment.
Interpretation: Rusfertide prevents iron re-accumulation in the absence of phlebotomies and could be a viable therapeutic option for selected patients with haemochromatosis.
Funding: Protagonist Therapeutics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S2468-1253(23)00250-9 | DOI Listing |
Drugs R D
December 2024
Protagonist Therapeutics, Inc., 7575 Gateway Blvd, Suite 110, Newark, CA, 94560-1160, USA.
Background And Objective: Hepcidin, an endogenous peptide hormone, binds to ferroportin and is the master regulator of iron trafficking. Rusfertide, a synthetic peptide, is a potent hepcidin mimetic. Clinical studies suggest rusfertide may be effective in the treatment of polycythemia vera.
View Article and Find Full Text PDFInt J Hematol
November 2024
Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
Polycythemia vera (PV) is a myeloproliferative neoplasm that is associated with an elevated risk of thrombosis. Treatment strategies are based on thrombosis risk classification. Phlebotomy is a commonly recommended treatment for all patients with PV, regardless of their risk classification, and reduces the incidence of thrombosis by lowering hematocrit levels.
View Article and Find Full Text PDFExpert Opin Pharmacother
August 2024
Department of Internal Medicine, Division of Hematology & Medical Oncology, Tisch Cancer Institute/Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Introduction: The treatment landscape of polycythemia vera (PV) has seen major advancements within the last decade including approval of ruxolitinib in the second line setting after hydroxyurea, ropegylated interferon-α2b, and advanced clinical development of a novel class of agents called hepcidin mimetics.
Areas Covered: We provide a comprehensive review of the evidence discussing the risk stratification, treatment indications, role and limitations of phlebotomy only approach and pivotal trials covering nuances related to the use of interferon-α (IFN-α), ruxolitinib, hepcidin mimetics, and upcoming investigational agents including HDAC and LSD1 inhibitors.
Expert Opinion: The research paradigm in PV is slowly shifting from the sole focus on hematocrit control and moving toward disease modification.
Eur J Haematol
September 2024
Protagonist Therapeutics, Inc., Newark, California, USA.
Objectives: Rusfertide is a potent peptide mimetic of hepcidin being investigated for the treatment of polycythemia vera. This randomized, placebo-controlled, double-blind study evaluated the safety, pharmacokinetics, and pharmacodynamics of single and repeated subcutaneous doses of an aqueous formulation of rusfertide in healthy adult males.
Methods: Subjects received single doses of 1, 3, 10, 20, 40, or 80 mg rusfertide or placebo.
Clin Lymphoma Myeloma Leuk
August 2024
Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY.
Although polycythemia vera (PV) is a chronic and incurable disease, effective management can allow most patients to maintain functional lives with near-normal life expectancy. However, there remain several inter-related factors that contribute to many ongoing challenges associated with the management of PV, which this review aims to explore. First, as a disease hallmarked by constitutive activation of the JAK/STAT pathway, PV is often accompanied by inflammatory symptoms that negatively impact quality of life.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!