APOE4-promoted gliosis and degeneration in tauopathy are ameliorated by pharmacological inhibition of HMGB1 release.

Cell Rep

Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA 94158, USA; Departments of Neurology and Pathology, University of California, San Francisco, San Francisco, CA 94143, USA. Electronic address:

Published: October 2023

Apolipoprotein E4 (APOE4) is an important driver of Tau pathology, gliosis, and degeneration in Alzheimer's disease (AD). Still, the mechanisms underlying these APOE4-driven pathological effects remain elusive. Here, we report in a tauopathy mouse model that APOE4 promoted the nucleocytoplasmic translocation and release of high-mobility group box 1 (HMGB1) from hippocampal neurons, which correlated with the severity of hippocampal microgliosis and degeneration. Injection of HMGB1 into the hippocampus of young APOE4-tauopathy mice induced considerable and persistent gliosis. Selective removal of neuronal APOE4 reduced HMGB1 translocation and release. Treatment of APOE4-tauopathy mice with HMGB1 inhibitors effectively blocked the intraneuronal translocation and release of HMGB1 and ameliorated the development of APOE4-driven gliosis, Tau pathology, neurodegeneration, and myelin deficits. Single-nucleus RNA sequencing revealed that treatment with HMGB1 inhibitors diminished disease-associated and enriched disease-protective subpopulations of neurons, microglia, and astrocytes in APOE4-tauopathy mice. Thus, HMGB1 inhibitors represent a promising approach for treating APOE4-related AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10873109PMC
http://dx.doi.org/10.1016/j.celrep.2023.113252DOI Listing

Publication Analysis

Top Keywords

translocation release
12
apoe4-tauopathy mice
12
hmgb1 inhibitors
12
gliosis degeneration
8
hmgb1
8
tau pathology
8
mice hmgb1
8
apoe4-promoted gliosis
4
degeneration tauopathy
4
tauopathy ameliorated
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Yonsei University, Incheon, Incheon, Korea, Republic of (South).

Background: Cyclin Y (CCNY) is a member of cyclin protein family inhibiting long-term synaptic plasticity, which is related to the learning and memory function in neuronal system. Recently, CCNY has been reported to associate with the cognitive deficits in Alzheimer's disease (AD).

Method: In this study, we discovered PFTAIRE peptide to diminish CCNY protein level and to ameliorate cognitive dysfunction in AD.

View Article and Find Full Text PDF

Bioavailability of encapsulated rosmarinic acid and β-Carotene in beef Sausages: A Caco-2 cell study.

Food Res Int

January 2025

State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, China. Electronic address:

In this study, we examined the bioavailability and functionality of rosmarinic acid and β-carotene in beef sausages using Caco-2 cell models. Digesta from enriched sausages showed high antioxidant activity, with 89.2% DPPH and 87.

View Article and Find Full Text PDF

Nobiletin (NOB), a lipid-soluble polymethoxyflavone with potent antioxidant, antimicrobial, and anti-inflammatory properties, suffers from poor stability and pH sensitivity, limiting its bioavailability. In this study, Pickering high internal phase emulsions (HIPEs) stabilized by soy protein isolate (SPI) and κ-carrageenan (KC) were developed to encapsulate and protect NOB. The emulsions, containing a 75 % medium-chain triglyceride (MCT) volume fraction, were optimized by investigating the effects of pH and KC concentration on the key properties such as the creaming index, particle size, zeta potential, microstructure, and rheology.

View Article and Find Full Text PDF

Streptococcus pneumoniae (Sp; pneumococcus), the most common agent of community-acquired pneumonia, can spread systemically, particularly in the elderly, highlighting the need for adjunctive therapies. The airway epithelial barrier defends against bacteremia and is dependent upon apical junctional complex (AJC) proteins such as E-cadherin. After mouse lung challenge, pneumolysin (PLY), a key Sp virulence factor, stimulates epithelial secretion of an inflammatory eicosanoid, triggering the infiltration of polymorphonuclear leukocytes (PMNs) that secrete high levels of neutrophil elastase (NE), thus promoting epithelial damage and systemic infection.

View Article and Find Full Text PDF

Mitochondrial dysfunction has been reported to participate in the pathophysiological processes of cerebral ischaemia-reperfusion injury, which include reduced energy homeostasis, increased generation of oxidative stress species (ROS) and the release of apoptotic factors. Oxyglutamate carrier (OGC) is an important carrier protein on the inner mitochondrial membrane that can transport metabolites from the cytoplasm to the mitochondria. The role of OGC in cerebral ischaemia-reperfusion injury (I/R) remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!