Haplotyped SNPs convey forensic-related information, and microhaplotypes (MHs), as the most representative of this kind of marker, have proved the potential value for human forensics. In recent years, nanopore sequencing technology has developed rapidly, with its outstanding ability to sequence long continuous DNA fragments and obtain phase information, making the detection of longer haplotype marker possible. In this proof-of-principle study, we proposed a new type of forensic marker, MiniHap, based on five or more SNPs within a molecular distance less than 800 bp, and investigated the haplotype data of 56 selected MiniHaps in five Chinese populations using the QNome nanopore sequencing. The sequencing performance, allele (haplotype) frequencies, forensic parameters, effective number of alleles (A), and informativeness (I) were subsequently calculated. In addition, we performed principal component analysis (PCA), phylogenetic tree, and structure analysis to investigate the population genetic relationships and ancestry components among the five investigated populations and 26 worldwide populations. MiniHap-04 exhibited remarkable forensic efficacy, with 148 haplotypes reported and the A was 66.9268. In addition, the power of discrimination (PD) was 0.9934, the probability of exclusion (PE) was 0.9898, and the I value was 0.7893. Of the 56 loci, 85.71% had PD values above 0.85, 66.07% had PE values above 0.54, 67.86% had A values over 7.0%, and 55.36% were with I values above 0.2 across all samples, indicating that most of the MiniHaps are suitable for individual identification, paternity testing, mixture deconvolution, and ancestry inference. Moreover, the results of PCA, phylogenetic tree and structure analysis demonstrated that this MiniHap panel had the competency in continental population ancestry inference, but the differentiation within intracontinental/linguistically restricted subpopulations was not ideal. Such findings suggested that the QNome device for MiniHap detection was feasible and this novel marker has the potential in ancestry inference. Yet, the establishment of a more comprehensive database with sufficient reference population data remains necessary to screen more suitable MiniHaps.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsigen.2023.102947 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!