Life on tidal coasts presents physiological major challenges for sessile species. Fluctuations in oxygen and temperature can affect bioenergetics and modulate metabolism and redox balance, but their combined effects are not well understood. We investigated the effects of intermittent hypoxia (12h/12h) in combination with different temperature regimes (normal (15 °C), elevated (30 °C) and fluctuating (15 °C water/30 °C air)) on the Pacific oyster Crassostrea (Magallana) gigas. Fluctuating temperature led to energetic costly metabolic rearrangements and accumulation of proteins in oyster tissues. Elevated temperature led to high (60%) mortality and oxidative damage in survivors. Normal temperature had no major negative effects but caused metabolic shifts. Our study shows high plasticity of oyster metabolism in response to oxygen and temperature fluctuations and indicates that metabolic adjustments to oxygen deficiency are strongly modulated by the ambient temperature. Co-exposure to constant elevated temperature and intermittent hypoxia demonstrates the limits of this adaptive metabolic plasticity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marenvres.2023.106231 | DOI Listing |
Small
January 2025
School of Engineering, Westlake University, Hangzhou, Zhejiang, 310023, China.
Photolithography is the most widely used micropatterning technique at the micro- and nanoscale in device fabrication. However, traditional photoresists used in photolithography are typically nonaqueous-based toxic substances that require harsh conditions for processing, limiting the development of biofunctional and biocompatible micropatterns. In this study, a protein-based aqueous photoresist derived from chemically modified silk fibroin named SAMA, capable of achieving high-resolution micropatterning (<1.
View Article and Find Full Text PDFMultimed Man Cardiothorac Surg
January 2025
• Pediatric and Congenital Cardiac Surgery, LMU University Hospital, Munich, Germany • Congenital Cardiac Surgery, German Heart Center Munich, Munich, Germany • European Pediatric Heart Center EKHZ Munich, Munich, Germany.
This procedure is carried out via a full sternotomy using standard aortic and bicaval cannulations. For the aortic and pulmonary anastomoses, selective antegrade unilateral cerebral perfusion is used after cooling the body temperature to 26 °Celsius. A 12-mm Hancock conduit is interposed between the pulmonary artery and the proximal descending aorta using standard running suture techniques.
View Article and Find Full Text PDFMater Horiz
January 2025
Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.
Dynamic responsive structural colored materials have drawn increased consideration in a wide range of applications, such as colorimetric sensors and high-safety tags. However, the sophisticated interactions among the individual responsive parts restrict the advanced design of multimodal responsive photonic materials. Inspired by stimuli-responsive color change in chameleon skin, a simple and effective photo-crosslinking strategy is proposed to construct hydroxypropyl cellulose (HPC) based hydrogels with multiple responsive structured colors.
View Article and Find Full Text PDFNanoscale
January 2025
Physics Department E20, School of Natural Sciences, Technical University of Munich, Garching, 85748, Germany.
-Armchair graphene nanoribbons (nAGNRs) are promising components for next-generation nanoelectronics due to their controllable band gap, which depends on their width and edge structure. Using non-metal surfaces for fabricating nAGNRs gives access to reliable information on their electronic properties. We investigated the influence of light and iron adatoms on the debromination of 4,4''-dibromo--terphenyl precursors affording poly(-phenylene) (PPP as the narrowest GNR) wires through the Ullmann coupling reaction on a rutile TiO(110) surface, which we studied by scanning tunneling microscopy and X-ray photoemission spectroscopy.
View Article and Find Full Text PDFSmall
January 2025
College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China.
Metal-free molecular perovskites have shown great potential for X-ray detection due to their tunable chemical structures, low toxicity, and excellent photophysical properties. However, their limited X-ray absorption and environmental instability restrict their practical application. In this study, cesium-based molecular perovskites (MDABCO-CsX, X = Cl, Br, I) are developed by introducing Cs at the B-site to enhance X-ray absorption while retaining low toxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!