Doping of zinc oxide (ZnO) with manganese (Mn) tunes midbandgap states of ZnO to enhance its optical properties and makes it into an efficient photoactive material for photoelectrochemical water splitting, waste removal from water, and other applications. We demonstrate that ZnO modified with 1 at. % Mn exhibits the best performance, as rationalized by experimental, structural, and optical characterization and theoretical analysis. ZnO doped with the optimal Mn content possesses improved light absorption in the visible region and minimizes charge carrier recombination. The doping is substitutional and creates midgap states near the valence band. Mn atoms break localized charge traps at oxygen vacancy sites and eliminate photoluminescence peaks associated with oxygen vacancies. The optimal performance of Mn-modified ZnO is demonstrated with the photodegradation of Congo red and photoelectrochemical water splitting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10626631PMC
http://dx.doi.org/10.1021/acs.jpclett.3c02730DOI Listing

Publication Analysis

Top Keywords

mn-modified zno
8
photoelectrochemical water
8
water splitting
8
zno
5
zno nanoflakes
4
nanoflakes optimal
4
optimal photoelectrochemical
4
photoelectrochemical performance
4
performance visible
4
visible light
4

Similar Publications

Doping of zinc oxide (ZnO) with manganese (Mn) tunes midbandgap states of ZnO to enhance its optical properties and makes it into an efficient photoactive material for photoelectrochemical water splitting, waste removal from water, and other applications. We demonstrate that ZnO modified with 1 at. % Mn exhibits the best performance, as rationalized by experimental, structural, and optical characterization and theoretical analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!