In extended Heisenberg-Kitaev-Gamma-type spin models, hidden-SU(2)-symmetric points are isolated points in parameter space that can be mapped to pure Heisenberg models via nontrivial duality transformations. Such points generically feature quantum degeneracy between conventional single-q and exotic multi-q states. We argue that recent single-crystal inelastic neutron scattering data place the honeycomb magnet Na_{2}Co_{2}TeO_{6} in proximity to such a hidden-SU(2)-symmetric point. The low-temperature order is identified as a triple-q state arising from the Néel antiferromagnet with staggered magnetization in the out-of-plane direction via a 4-sublattice duality transformation. This state naturally explains various distinctive features of the magnetic excitation spectrum, including its surprisingly high symmetry and the dispersive low-energy and flat high-energy bands. Our result demonstrates the importance of bond-dependent exchange interactions in cobaltates, and illustrates the intriguing magnetic behavior resulting from them.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.131.146702 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!