An integrated approach to the characterization of immune repertoires using AIMS: An Automated Immune Molecule Separator.

PLoS Comput Biol

Computational Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America.

Published: October 2023

The adaptive immune system employs an array of receptors designed to respond with high specificity to pathogens or molecular aberrations faced by the host organism. Binding of these receptors to molecular fragments-collectively referred to as antigens-initiates immune responses. These antigenic targets are recognized in their native state on the surfaces of pathogens by antibodies, whereas T cell receptors (TCR) recognize processed antigens as short peptides, presented on major histocompatibility complex (MHC) molecules. Recent research has led to a wealth of immune repertoire data that are key to interrogating the nature of these molecular interactions. However, existing tools for the analysis of these large datasets typically focus on molecular sets of a single type, forcing researchers to separately analyze strongly coupled sequences of interacting molecules. Here, we introduce a software package for the integrated analysis of immune repertoire data, capable of identifying distinct biophysical differences in isolated TCR, MHC, peptide, antibody, and antigen sequence data. This integrated analytical approach allows for direct comparisons across immune repertoire subsets and provides a starting point for the identification of key interaction hotspots in complementary receptor-antigen pairs. The software (AIMS-Automated Immune Molecule Separator) is freely available as an open access package in GUI or command-line form.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619816PMC
http://dx.doi.org/10.1371/journal.pcbi.1011577DOI Listing

Publication Analysis

Top Keywords

immune repertoire
12
immune
8
immune molecule
8
molecule separator
8
repertoire data
8
integrated approach
4
approach characterization
4
characterization immune
4
immune repertoires
4
repertoires aims
4

Similar Publications

Evidence has shown that T-cell receptors (TCRs) that recognize the same epitopes may not be the exact TCR clonotypes but have slightly different TCR sequences. However, the changes in the genomic and transcriptomic signatures of these highly homologous T cells during immunotherapy remain unknown. Here, we examined the evolutionary features in circulating TCR clonotypes observed in tumors (tumor-infiltrating lymphocyte (TIL)-TCRs) by combining single-cell RNA/TCR sequencing of longitudinal blood samples and TCR sequencing of tumor tissue from a patient treated with anti-cytotoxic T-lymphocyte-associated protein 4/programmed cell death protein-1 therapy.

View Article and Find Full Text PDF

The treatment landscape for advanced melanoma has transformed significantly with the advent of BRAF and MEK inhibitors (BRAF/MEKi) targeting V600 mutations, as well as immune checkpoint inhibitors (ICI) like anti-PD-1 monotherapy or its combinations with anti-CTLA-4 or anti-LAG-3. Despite that, many patients still do not benefit from these treatments at all or develop resistance mechanisms. Therefore, prognostic and predictive biomarkers are needed to identify patients who should switch or escalate their treatment strategies or initiate an intensive follow-up.

View Article and Find Full Text PDF

PEPITEM is an immune-modulatory peptide that effectively regulates inflammation and mitigates immune-mediated inflammatory diseases (IMIDs). Here, we identify two independently active tripeptide pharmacophores within PEPITEM and engineered peptidomimetics with enhanced pharmacodynamic properties. These peptidomimetics regulate T-cell trafficking in vitro and reduce T-cell, neutrophil and macrophage numbers in the inflamed peritoneal cavity in vivo.

View Article and Find Full Text PDF

Takayasu arteritis: a geographically distant but immunologically proximal MHC-I-opathy.

Lancet Rheumatol

January 2025

Section of Musculoskeletal Disease, NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, UK. Electronic address:

Takayasu arteritis, a granulomatosis vasculitis with a pathogenesis that is poorly defined but known to be associated with HLA-B*52, shares many features with other MHC-I-opathies. In addition to the shared clinical features of inflammatory bowel diseases, cutaneous inflammation, and HLA-B*52, is shared association of an IL12B single- nucleotide polymorphism encoding the common IL-12 and IL-23 p40 subunit, which might affect not only type 17 cytokine responses, but also IFNγ and TNF production-the cardinal type 1 cytokines in granuloma formation. Considering the translational context of responses to TNF inhibition in Takayasu arteritis, in this Personal View we propose Takayasu arteritis as a type 1 MHC-I-opathy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!