Conjugated macromolecules have a rich history in chemistry, owing to their chemical arrangements that intertwine physical and electronic properties. The continuing study and application of these systems, however, necessitates the development of atomically precise models that bridge the gap between molecules, polymers, and/or their blends. One class of conjugated polymers that have facilitated the advancement of structure-property relationships is discrete, precision oligomers that have remained an outstanding synthetic challenge with only a handful of reported examples. Here we show the first synthesis of molecular dyads featuring sequence-defined oligothiophene donors covalently linked a to small-molecule acceptor. These dyads serve as a platform for probing complex photophysical interactions involving sequence-defined oligomers. This assessment is facilitated through the unprecedented control of oligothiophene length- and sequence-dependent arrangement relative to the acceptor unit, made possible by the incorporation of hydroxyl-containing side chains at precise positions along the backbone through sequence-defined oligomerizations. We show that both the oligothiophene sequence and length play complementary roles in determining the transfer efficiency of photoexcited states. Overall, the work highlights the importance of the spatial arrangement of donor-acceptor systems that are commonly studied for a range of uses, including light harvesting and photocatalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.3c06923 | DOI Listing |
Small
January 2025
Department of Chemistry, McGill University, 801, Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada.
Oligonucleotide therapeutics, including antisense oligonucleotides and small interfering RNA, offer promising avenues for modulating the expression of disease-associated proteins. However, challenges such as nuclease degradation, poor cellular uptake, and unspecific targeting hinder their application. To overcome these obstacles, spherical nucleic acids have emerged as versatile tools for nucleic acid delivery in biomedical applications.
View Article and Find Full Text PDFSmall
January 2025
Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
Endowing biomimetic sequence-controlled polymers with chiral functionality to construct stimuli-responsive chiral materials offers a promising approach for innovative chiroptical switch, but it remains challenging. Herein, it is reported that the self-assembly of sequence-defined chiral amphiphilic alternating azopeptoids to generate photo-responsive and ultrathin bilayer peptoidosomes with a vesicular thickness of ≈1.50 nm and a diameter of around ≈290 nm.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
ConspectusStructural DNA nanotechnology offers a unique self-assembly toolbox to construct soft materials of arbitrary complexity, through bottom-up approaches including DNA origami, brick, wireframe, and tile-based assemblies. This toolbox can be expanded by incorporating interactions orthogonal to DNA base-pairing such as metal coordination, small molecule hydrogen bonding, π-stacking, fluorophilic interactions, or the hydrophobic effect. These interactions allow for hierarchical and long-range organization in DNA supramolecular assemblies through a DNA-minimal approach: the use of fewer unique DNA sequences to make complex structures.
View Article and Find Full Text PDFACS Nano
January 2025
Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States.
J Chem Phys
December 2024
Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA.
Peptoids (N-substituted glycines) are a class of sequence-defined synthetic peptidomimetic polymers with applications including drug delivery, catalysis, and biomimicry. Classical molecular simulations have been used to predict and understand the conformational dynamics of single chains and their self-assembly into morphologies including sheets, tubes, spheres, and fibrils. The CGenFF-NTOID model based on the CHARMM General Force Field has demonstrated success in accurate all-atom molecular modeling of peptoid structure and thermodynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!