A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A safety framework for flow decomposition problems via integer linear programming. | LitMetric

Motivation: Many important problems in Bioinformatics (e.g. assembly or multiassembly) admit multiple solutions, while the final objective is to report only one. A common approach to deal with this uncertainty is finding "safe" partial solutions (e.g. contigs) which are common to all solutions. Previous research on safety has focused on polynomially time solvable problems, whereas many successful and natural models are NP-hard to solve, leaving a lack of "safety tools" for such problems. We propose the first method for computing all safe solutions for an NP-hard problem, "minimum flow decomposition" (MFD). We obtain our results by developing a "safety test" for paths based on a general integer linear programming (ILP) formulation. Moreover, we provide implementations with practical optimizations aimed to reduce the total ILP time, the most efficient of these being based on a recursive group-testing procedure.

Results: Experimental results on transcriptome datasets show that all safe paths for MFDs correctly recover up to 90% of the full RNA transcripts, which is at least 25% more than previously known safe paths. Moreover, despite the NP-hardness of the problem, we can report all safe paths for 99.8% of the over 27 000 non-trivial graphs of this dataset in only 1.5 h. Our results suggest that, on perfect data, there is less ambiguity than thought in the notoriously hard RNA assembly problem.

Availability And Implementation: https://github.com/algbio/mfd-safety.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628435PMC
http://dx.doi.org/10.1093/bioinformatics/btad640DOI Listing

Publication Analysis

Top Keywords

safe paths
12
integer linear
8
linear programming
8
safety framework
4
framework flow
4
flow decomposition
4
problems
4
decomposition problems
4
problems integer
4
programming motivation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!