Objective: Medical imaging techniques have widely revolutionized the diagnosis and treatment of various health conditions. Among these techniques, magnetic resonance imaging (MRI) has stood out as a noninvasive and versatile tool. Now, a breakthrough innovation called "manganese-carbon dots" is poised to enhance MRI imaging and provide physicians with even greater insight into the human body.

Materials And Methods: In this study, one-pot hydrothermal method was used to fabricate magneto-fluorescent carbon quantum dots using manganese citrate, urea, and Mn2+. Manganese citrateAQ3 acted as a carbon source and contrast agent. TEM,XPS, FTIR, UV-Vis, fluorescent analysis confirmed the successful synthesis of magneto-fluorescent carbon quantum dots. The MTT assay was used to study its biocompatiblity, Finallay application of itscompound for mri imaging was investigated.

Results: Characterization Techniques confirmed the succesful synthesis of product. MTT assay showed no toxicity of this product on HEK-293 cells. In addition, it exhibited high r1 relaxivity (7.4 mM-1 S-1) suggesting excellent potential of magneto-fluorescent carbon quantum dots as MRI T1 contrast agent and enabling specific imaging.

Conclusion: Based on the results obtained, the synthesized carbon quantum dots could be used as fluorescence/MRI bimodal platform for in vivo imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10334-023-01117-8DOI Listing

Publication Analysis

Top Keywords

magneto-fluorescent carbon
16
carbon quantum
16
quantum dots
16
mri imaging
12
manganese citrate
8
contrast agent
8
mtt assay
8
carbon
6
imaging
6
mri
5

Similar Publications

A simple, one-pot and green method is reported for hydrothermal synthesis of highly fluorescent and magnetic carbon dots (CDs) by using D-glucose, as the carbon source. CDs were fully characterized by the UV-Vis and fluorescence spectroscopy, DLS, FTIR, TEM, EDS, XRD, and VSM. The nitrogen doping of different diamines significantly improved the fluorescence quantum yield (QY) of CDs with the maximum effect obtained by using m-phenylenediamine (mPDA).

View Article and Find Full Text PDF

Objective: Medical imaging techniques have widely revolutionized the diagnosis and treatment of various health conditions. Among these techniques, magnetic resonance imaging (MRI) has stood out as a noninvasive and versatile tool. Now, a breakthrough innovation called "manganese-carbon dots" is poised to enhance MRI imaging and provide physicians with even greater insight into the human body.

View Article and Find Full Text PDF

Fluorescent carbon dots tailored iron oxide nano hybrid system foroptical imaging of liver fibrosis.

Methods Appl Fluoresc

March 2023

Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences &Technology, Poojappura, Thiruvananthapuram-695012, Kerala, India.

Hybrid nanoparticles are innovative invention of last decade designed to overcome limitations of single-component nanoparticles by introducing multiple functionalities through combining two or more different nanoparticles. In this study, we are reporting development of magneto-fluorescent hybrid nanoparticles by combining iron oxide and carbon nanoparticles to enablefluorescence imaging which also has all the required characteristic properties to use as Magnetic Resonance Imaging (MRI) contrast agent. In order to achieve dual-functional imaging, alginate and pullulan coated super paramagnetic iron oxide nanoparticles (ASPION and PSPION) and Carbon dots (Cdts) were synthesised separately.

View Article and Find Full Text PDF

Although, superparamagnetic iron oxide nanoparticles (SPIONs) have extensively been used as a contrasting agent for magnetic resonance imaging (MRI), the lack of intrinsic fluorescence restricted their application as a multimodal probe, especially in combination with light microscopy. In Addition, the bigger size of the particle renders them incompetent for bioimaging of small organelles. Herein, we report, not only the synthesis of ultrasmall carbon containing magneto-fluorescent SPIONs with size ∼5 nm, but also demonstrate its capability as a multicolor imaging probe.

View Article and Find Full Text PDF

Magneto-Fluorescent Hybrid Sensor CaCO-FeO-AgInS/ZnS for the Detection of Heavy Metal Ions in Aqueous Media.

Materials (Basel)

September 2020

Center of Information Optical Technology, ITMO University, 49 Kronverksky Prospekt, 197101 St. Petersburg, Russia.

Article Synopsis
  • Heavy metal ions, which don't biodegrade and can pollute natural resources, are highly toxic even in small amounts and pose health risks.
  • This research explores using colloidal luminescent semiconductor quantum dots (QDs) combined with superparamagnetic nanoparticles to create a sensitive optical sensor for detecting toxic heavy metal ions like Co, Ni, and Pb.
  • The study shows that the sensor can accurately detect these metals in water at very low concentrations (as low as ≈0.01 ppm) and highlights the advantage of using a magnetic field to easily extract the sensors from solutions for analysis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!