Background: Ultra-low-dose (ULD) computed tomography (CT) scans should be used when CT is performed only for attenuation correction (AC) of positron emission tomography (PET) data. A tin filter can be used in addition to the standard aluminium bowtie filter to reduce CT radiation dose to patients. The aim was to determine how low CT doses can be, when utilised for PET AC, with and without the tin filter, whilst providing adequate PET quantification.
Methods: A water-filled NEMA image quality phantom was imaged in three configurations with F-FDG: (1) water only (0HU); (2) with cylindrical insert containing homogenous mix of sand, flour and water (SFW, approximately 475HU); (3) with cylindrical insert containing sand (approximately 1100HU). Each underwent one-bed-position (26.3 cm) PET-CT comprising 1 PET and 13 CT acquisitions. CT acquisitions with tube current modulation were performed at 120 kV/50 mAs-ref (reference standard), 100 kV/7 mAs-ref (standard ULDCT for PET AC protocol), Sn140kV (mAs range 7-50-ref) and Sn100kV (mAs range 12-400-ref). PET data were reconstructed with μ-maps provided by each CT dataset, and PET activity concentration measured in each reconstruction. Differences in CT dose length product (DLP) and PET quantification were determined relative to the reference standard.
Results: At each tube voltage, changes in PET quantification were greater with increasing density and reducing mAs. Compared with the reference standard, differences in PET quantification for the standard ULDCT protocol for the three phantoms were ≤ 1.7%, with the water phantom providing a DLP of 7mGy.cm. With tin filter at Sn100kV, differences in PET quantification were negligible (≤ 1.2%) for all phantoms down to 50mAs-ref, proving a DLP of 2.8mGy.cm, at 60% dose reduction compared with standard ULDCT protocol. Below 50mAs-ref, differences in PET quantification were > 2% for at least one phantom (2.3% at 25mAs-ref in SFW; 6.4% at 12mAs-ref in sand). At Sn140kV/7mAs-ref, quantification differences were ≤ 0.6% in water, giving 3.8mGy.cm DLP, but increased to > 2% at bone-equivalent densities.
Conclusions: CT protocols for PET AC can provide ultra-low doses with adequate PET quantification. The tin filter can allow 60-87% lower dose than the standard ULDCT protocol for PET AC, depending on tissue density and accepted change in PET quantification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589162 | PMC |
http://dx.doi.org/10.1186/s40658-023-00585-0 | DOI Listing |
Alzheimers Dement
December 2024
Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
Background: APOE is the greatest genetic risk factor for AD, however, other smaller genetic effects are often ignored. In this work, endophenotype-informed polygenic scores (PGS) that exclude the APOE region were tested along with a separate, previously published, APOE neuropathology-based score (APOEscore). The APOEscore serves as a more nuanced quantification of APOE genetic risk that considers the effects of the different haplotypes.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The UC Irvine Institute for Memory Impairments and Neurological Disorders (UCI MIND), Irvine, CA, USA.
Background: Brain deposits of amyloid-β (Aβ), one of the hallmark pathologies of Alzheimer disease (AD), are consistently present in people with Down syndrome (DS) after the age of 30 years. Positron emission tomography (PET) radioligands like [3H]Pittsburgh Compound-B (PiB) allow for visualizing Aβ accumulation in living people. In DS, the earliest and strongest PiB-PET retention is in the striatum, differing from late-onset AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of California San Diego, La Jolla, CA, USA.
Background: Our data from several clinical trials of individuals with asymptomatic AD demonstrates that plasma Aβ42/40 quantification by mass spectrometry can serve as a reliable biomarker for predicting elevated brain amyloid as detected by PET. We investigated how adding plasma p-tau measures to our plasma Aβ42/40 algorithm to streamline identification of eligible participants and reduce burden and trial cost. To determine if the addition of plasma p-tau181 and/or p-tau217 concentrations can improve plasma Aβ42/40 algorithms to correctly identify participants with amyloid burden of >20 centiloids with the NAV4694 tracer among individuals screening for participation in the AHEAD preclinical AD trial.
View Article and Find Full Text PDFJ Nucl Med
January 2025
Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan;
Microglia, the immune cells in the brain, play a significant role in the pathophysiology of neurodegenerative diseases. To visualize these cells in the living brain, we developed a PET ligand, [C]NCGG401 (4-{2-[((1,2)-2-hydroxycyclohexyl)(methyl)amino]benzothiazol-6-yloxy}--methylpicolinamide, NCGG401), that targets colony-stimulating factor 1 receptor (CSF1R). In this study, we present the first-in-human evaluation of [C]NCGG401 to assess its safety profile and then to evaluate its kinetics to quantify CSF1R in the human brain.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
Purpose: The aim of this study was to validate simplified methods for quantifying [Ga]Ga-FAPI-46 uptake against full pharmacokinetic modeling.
Methods: Ten patients with pancreatobiliary cancer underwent a 90-min dynamic PET/CT scan using a long axial field of view system. Arterial blood samples were used to establish calibrated plasma-input function from both continuous arterial sampling and image-derived input function (IDIF).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!