Endophthalmitis is an acute inflammatory intraocular condition that can cause permanent vision loss. The treatment strategy and visual outcome partly depend on the identification of the agents of pathogens. In this study, metagenomic sequencing was conducted to investigate the microbial and antibiotic resistance genes (ARGs) composition in the vitreous (intraocular body fluid) of an endophthalmitis patient, who progressed rapidly and accompanied by severe pain. Metagenomic sequencing data revealed that the vitreous sample was predominated by Streptococcus, with a low-diversity microbiome in the vitreous. This strain harbor's the ARGs mainly against beta-lactam, macrolide-lincosamide-streptogramin, and multidrug. Additionally, metagenome-assembled genome sequence of Streptococcus sp. v1. nov. was identified. The Tetra Correlation Search (TCS) analysis uncovered that the closest relative of the Streptococcus sp. v1. nov. was Streptococcus mitis SK321. Pan/core genome analysis for Streptococcus sp. v1. nov. and TCS top 25 hits strains revealed that most unique genes of Streptococcus sp. v1. nov. were linked to ATP-binding cassette transport system, which could indicate unique virulence and pathogenic potentials of Streptococcus sp. v1. nov. In addition, a total of 7 virulence factors were identified, and the overwhelming of them were classified into "offensive virulence factors". The high pathogenicity of Streptococcus sp. v1. nov. could be a reason for the patient's rapid disease progression. Our study was first isolated an ocular pathogen with highly virulent based on metagenomic sequencing and bioinformatics analysis, which has important reference value for revealing the composition and genome characteristics of pathogens in endophthalmitis patient in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00284-023-03460-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!