Background: There are 3 issues in bibliometrics that need to be addressed: The lack of a clear definition for author collaborations in cluster analysis that takes into account collaborations with and without self-connections; The need to develop a simple yet effective clustering algorithm for use in coword analysis, and; The inadequacy of general bibliometrics in regard to comparing research achievements and identifying articles that are worth reading and recommended for readers. The study aimed to put forth a clustering algorithm for cluster analysis (called following leader clustering [FLCA], a follower-leading clustering algorithm), examine the dissimilarities in cluster outcomes when considering collaborations with and without self-connections in cluster analysis, and demonstrate the application of the clustering algorithm in bibliometrics.
Methods: The study involved a search for articles and review articles published in JMIR Medical Informatics between 2016 and 2022, conducted using the Web of Science core collections. To identify author collaborations (ACs) and themes over the past 7 years, the study utilized the FLCA algorithm. With the 3 objectives of; Comparing the results obtained from scenarios with and without self-connections; Applying the FLCA algorithm in ACs and themes, and; Reporting the findings using traditional bibliometric approaches based on counts and citations, and all plots were created using R.
Results: The study found a significant difference in cluster outcomes between the 2 scenarios with and without self-connections, with a 53.8% overlap (14 out of the top 20 countries in ACs). The top clusters were led by Yonsei University in South Korea, Grang Luo from the US, and model in institutes, authors, and themes over the past 7 years. The top entities with the most publications in JMIR Medical Informatics were the United States, Yonsei University in South Korea, Medical School, and Grang Luo from the US.
Conclusion: The FLCA algorithm proposed in this study offers researchers a comprehensive approach to exploring and comprehending the complex connections among authors or keywords. The study suggests that future research on ACs with cluster analysis should employ FLCA and R visualizations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589539 | PMC |
http://dx.doi.org/10.1097/MD.0000000000035156 | DOI Listing |
Nat Methods
January 2025
Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Spatial molecular profiling has provided biomedical researchers valuable opportunities to better understand the relationship between cellular localization and tissue function. Effectively modeling multimodal spatial omics data is crucial for understanding tissue complexity and underlying biology. Furthermore, improvements in spatial resolution have led to the advent of technologies that can generate spatial molecular data with subcellular resolution, requiring the development of computationally efficient methods that can handle the resulting large-scale datasets.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Nephrology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, 920-0293, Ishikawa, Japan.
To decrease the number of chronic kidney disease (CKD), early diagnosis of diabetic kidney disease is required. We performed invariant information clustering (IIC)-based clustering on glomerular images obtained from nephrectomized kidneys of patients with and without diabetes. We also used visualizing techniques (gradient-weighted class activation mapping (Grad-CAM) and generative adversarial networks (GAN)) to identify the novel and early pathological changes on light microscopy in diabetic nephropathy.
View Article and Find Full Text PDFEur J Oncol Nurs
January 2025
School of Nursing, Guangzhou Medical University, Guangzhou, Guangdong Province, China. Electronic address:
Purpose: This study aimed to explore symptom clusters and the inter-relationship of symptoms in esophageal cancer (EC) patients during the first week after surgery.
Methods: A cross-sectional survey across multiple centers was carried out using the EORTCQLQ-OES18. Patients with esophageal cancer within a week post-surgery were recruited from the "Be Resilient to Cancer" project in Guangdong, Hunan, and Sichuan provinces between January and September 2024.
PLoS One
January 2025
Division of Biological Sciences, US Fish and Wildlife Southwest Regional Office, Albuquerque, New Mexico, United States of America.
There is growing interest in using deep learning models to automate wildlife detection in aerial imaging surveys to increase efficiency, but human-generated annotations remain necessary for model training. However, even skilled observers may diverge in interpreting aerial imagery of complex environments, which may result in downstream instability of models. In this study, we present a framework for assessing annotation reliability by calculating agreement metrics for individual observers against an aggregated set of annotations generated by clustering multiple observers' observations and selecting the mode classification.
View Article and Find Full Text PDFCancer Med
January 2025
Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China.
Background: Distinctive heterogeneity characterizes diffuse large B-cell lymphoma (DLBCL), one of the most frequent types of non-Hodgkin's lymphoma. Mitochondria have been demonstrated to be closely involved in tumorigenesis and progression, particularly in DLBCL.
Objective: The purposes of this study were to identify the prognostic mitochondria-related genes (MRGs) in DLBCL, and to develop a risk model based on MRGs and machine learning algorithms.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!