Female sand fleas (Tunga penetrans Linnaeus, 1758, Siphonaptera: Tungidae) cause a severe parasitic skin disease known as tungiasis. T. penetrans is a small flea, measuring less than 1 mm in length. The females of this species burrow into the skin of human and animal hosts and mostly affect the feet. This has led to the anecdotal assumption that T. penetrans, unlike its relatives in the Siphonaptera family, would have a limited jumping ability potentially not reaching higher body parts. However, there is no data supporting this. This study evaluated the jumping capabilities of T. penetrans for height and distance using sticky tapes. The vertical jump of the female T. penetrans ranged from 4.5 to 100 mm with a mean of 40 mm whereas the vertical jump of the male T. penetrans ranged from 1.2 to 138 mm with a mean of 46 mm. The horizontal jump of the female T. penetrans ranged from 18 to 138 mm with a mean of 64 mm and that of the male ranged from 9 to 251 mm with a mean of 80 mm. Based on the literature, fleas of various species have been described as jumping vertically 50-100 times their size and horizontally 5-100 times their size. In this respect, sand fleas appear to have equal expert jumping abilities to their relatives. Their aggregation on people's feet is not likely a result of their poor jumping ability but might be an adaptation to the host's behavior which would require further investigations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10784774 | PMC |
http://dx.doi.org/10.1093/jme/tjad143 | DOI Listing |
Sensors (Basel)
January 2025
Department of Automation, Tsinghua University, Beijing 100084, China.
Squatting is a fundamental and crucial movement, often employed as a basic test during robot commissioning, and it plays a significant role in some service industries and in cases when robots perform high-dynamic movements like jumping. Therefore, achieving continuous and precise squatting actions is of great importance for the future development of humanoid robots. In this paper, we apply three-particle model predictive control (TP-MPC) combined with weight-based whole-body control (WBC) to a humanoid robot.
View Article and Find Full Text PDFChildren (Basel)
January 2025
Research Laboratory, Exercise Physiology and Physiopathology: From Integrated to Molecular "Biology, Medicine and Health" (LR19ES09), Faculty of Medicine of Sousse, University of Sousse, Sousse 4000, Tunisia.
Objectives: There is a lack of studies that investigate the relationship between anthropometric profiles, biological maturity, and specific physical performances in young male basketball players. This study aimed to evaluate the development of anthropometric characteristics and physical performance across different age and maturity groups among male basketball players in Palestine, as well as to identify the anthropometric factors influencing physical performance within this population.
Methods: A total of one-hundred-fifty male basketball players, aged 12 to 16, participated in this study.
Eur J Neurosci
January 2025
Faculty of Physical Activity and Sport Sciences (INEF), Sports Department, Universidad Politécnica de Madrid (UPM), Madrid, Spain.
Soccer players must react quickly and execute complex mental processes to adapt to competitive scenarios while maintaining peak physical performance. Perceptual-cognitive training methods integrate reaction tasks using nonspecific visual stimuli with game-like motor actions, but the impact on explosive strength responses is unclear. This study investigates the effect of nonspecific visual stimuli with varying perceptual-cognitive constraints on jump performance, including countermovement jump height, reactive strength index modified, action time, and reaction time.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan.
In recent years, humanoid robot technology has been developing rapidly due to the need for robots to collaborate with humans or replace them in various tasks, requiring them to operate in complex human environments and placing high demands on their mobility. Developing humanoid robots with human-like walking and hopping abilities has become a key research focus, as these capabilities enable robots to move and perform tasks more efficiently in diverse and unpredictable environments, with significant applications in daily life, industrial operations, and disaster rescue. Currently, methods based on hybrid zero dynamics and reinforcement learning have been employed to enhance the walking and hopping capabilities of humanoid robots; however, model predictive control (MPC) presents two significant advantages: it can adapt to more complex task requirements and environmental conditions, and it allows for various walking and hopping patterns without extensive training and redesign.
View Article and Find Full Text PDFJ Funct Morphol Kinesiol
January 2025
Department of Sports Training Science-Combats, National Taiwan Sport University, Taoyuan City 333, Taiwan.
Background/objectives: The underlying mechanisms of taekwondo-specific jumping ability among different competition levels are still unknown. This study aimed to compare vertical and horizontal stretch-shortening cycle (SSC) performance between athletes of different competitive levels and examine the relationships of force and power production abilities between those two directions in Taiwanese collegiate-level male taekwondo athletes.
Methods: Seventeen male collegiate taekwondo athletes were divided into two groups: medalists (MG, n = 8) and non-medalists (NMG, n = 9); both groups performed countermovement jumps (CMJ) on a force platform and single-leg lateral hops (SLLHs) via an optoelectronic measurement system.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!