The Omicron subvariants have substantially evaded host-neutralizing antibodies and adopted an endosomal route of entry. The virus has acquired several mutations in the receptor binding domain and N-terminal domain of S1 subunit, but remarkably, also incorporated mutations in S2 which are fixed in Omicron sub-lineage. Here, we found that the mutations in the S2 subunit affect the structural and biological properties such as neutralization escape, entry route, fusogenicity, and protease requirement. , these mutations may have significant roles in tropism and replication. A detailed understanding of the effects of S2 mutations on Spike function, immune evasion, and viral entry would inform the vaccine design, as well as therapeutic interventions aiming to block the essential proteases for virus entry. Thus, our study has identified the crucial role of S2 mutations in stabilizing the Omicron spike and modulating neutralization resistance to antibodies targeting the S1 subunit.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688319PMC
http://dx.doi.org/10.1128/jvi.00922-23DOI Listing

Publication Analysis

Top Keywords

mutations subunit
8
omicron spike
8
mutations
7
subunit sars-cov-2
4
omicron
4
sars-cov-2 omicron
4
spike influence
4
influence conformation
4
conformation fusogenicity
4
fusogenicity neutralization
4

Similar Publications

Background: Chinese cabbage is a cross-pollinated crop with remarkable heterosis, and male-sterile line is an important mean to produce its hybrids. In this study, a male-sterile mutant msm7 was isolated from a Chinese cabbage DH line 'FT' by using EMS-mutagenesis.

Results: Compared with the wild-type 'FT', the anthers of mutant msm7 were completely aborted, accompanied by the defects in leaf and petal development.

View Article and Find Full Text PDF

The effect of LARP7 on gene expression during osteogenesis.

Mol Biol Rep

January 2025

Institute of Health Sciences, Department of Medical and Surgical Research, Hacettepe University, Ankara, Turkey.

Background: La-related protein 7 (LARP7) is a key regulator of RNA metabolism and is thought to play a role in various cellular processes. LARP7 gene autosomal recessive mutations are the cause of Alazami syndrome, which presents with skeletal abnormalities, intellectual disabilities, and facial dysmorphisms. This study aimed to determine the role of LARP7 in modulating gene expression dynamics during osteogenesis.

View Article and Find Full Text PDF

Neurons require high amounts energy, and mitochondria help to fulfill this requirement. Dysfunc-tional mitochondria trigger problems in various neuronal tasks. Using the neuromuscular junction (NMJ) as a model synapse, we previously reported that Mitochondrial Complex I (MCI) subunits were required for maintaining NMJ function and growth.

View Article and Find Full Text PDF

40S ribosomal subunits scan mRNA for the start codon by one-dimensional diffusion.

bioRxiv

January 2025

Department of Biochemistry & Biophysics at the School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY, USA.

During eukaryotic translation initiation, the small (40S) ribosomal subunit is recruited to the 5' cap and subsequently scans the 5' untranslated region (5' UTR) of mRNA in search of the start codon. The molecular mechanism of mRNA scanning remains unclear. Here, using GFP reporters in cells, we show that order-of-magnitude variations in the lengths of unstructured 5' UTRs have a modest effect on protein synthesis.

View Article and Find Full Text PDF

Primary aldosteronism (PA) is a common cause of secondary hypertension, with familial hyperaldosteronism (FH) contributing to a lesser number of cases. FH type IV, a rare subtype, has hardly been reported as a subtype of PA cases. We present a case of a 27-year-old female who presented to the emergency department with circumoral tingling and numbness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!