Purpose Of Review: Recent technological advances have accelerated the use of Machine Learning in trauma science. This review provides an overview on the available evidence for research and patient care. The review aims to familiarize clinicians with this rapidly evolving field, offer perspectives, and identify existing and future challenges.
Recent Findings: The available evidence predominantly focuses on retrospective algorithm construction to predict outcomes. Few studies have explored actionable outcomes, workflow integration, or the impact on patient care. Machine Learning and data science have the potential to simplify data capture and enhance counterfactual causal inference research from observational data to address complex issues. However, regulatory, legal, and ethical challenges associated with the use of Machine Learning in trauma care deserve particular attention.
Summary: Machine Learning holds promise for actionable decision support in trauma science, but rigorous proof-of-concept studies are urgently needed. Future research should assess workflow integration, human-machine interaction, and, most importantly, the impact on patient outcome. Machine Learning enhanced causal inference for observational data carries an enormous potential to change trauma research as complement to randomized studies. The scientific trauma community needs to engage with the existing challenges to drive progress in the field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MCC.0000000000001104 | DOI Listing |
Biol Direct
January 2025
School of Medicine, South China University of Technology, Guangzhou, 510006, China.
Background: Pancreatic cancer is characterized by a complex tumor microenvironment that hinders effective immunotherapy. Identifying key factors that regulate the immunosuppressive landscape is crucial for improving treatment strategies.
Methods: We constructed a prognostic and risk assessment model for pancreatic cancer using 101 machine learning algorithms, identifying OSBPL3 as a key gene associated with disease progression and prognosis.
BMC Med Inform Decis Mak
January 2025
Department of Pediatrics, School of Medicine, Ekbatan Hospital, Hamadan University of Medical Sciences, Hamadan, Iran.
Background: Urinary tract infection (UTI) is a frequent health-threatening condition. Early reliable diagnosis of UTI helps to prevent misuse or overuse of antibiotics and hence prevent antibiotic resistance. The gold standard for UTI diagnosis is urine culture which is a time-consuming and also an error prone method.
View Article and Find Full Text PDFOrphanet J Rare Dis
January 2025
Laboratory of Metabolic Diseases, Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Postbus, Groningen, 30001 - 9700 RB, the Netherlands.
Background: Glycogen storage disease (GSD) Ia is an ultra-rare inherited disorder of carbohydrate metabolism. Patients often present in the first months of life with fasting hypoketotic hypoglycemia and hepatomegaly. The diagnosis of GSD Ia relies on a combination of different biomarkers, mostly routine clinical chemical markers and subsequent genetic confirmation.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Hand-Foot Microsurgery, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.
Background: Steroid-induced osteonecrosis of the femoral head (SIONFH) is a universal hip articular disease and is very hard to perceive at an early stage. The understanding of the pathogenesis of SIONFH is still limited, and the identification of efficient diagnostic biomarkers is insufficient. This research aims to recognize and validate the latent exosome-related molecular signature in SIONFH diagnosis by employing bioinformatics to investigate exosome-related mechanisms in SIONFH.
View Article and Find Full Text PDFCrit Care
January 2025
Department of Pediatric, West China Second University Hospital, Sichuan University, Chengdu, China.
Background: Patients supported by extracorporeal membrane oxygenation (ECMO) are at a high risk of brain injury, contributing to significant morbidity and mortality. This study aimed to employ machine learning (ML) techniques to predict brain injury in pediatric patients ECMO and identify key variables for future research.
Methods: Data from pediatric patients undergoing ECMO were collected from the Chinese Society of Extracorporeal Life Support (CSECLS) registry database and local hospitals.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!