NcRNA-encoded small peptides (ncPEPs) have recently emerged as promising targets and biomarkers for cancer immunotherapy. Therefore, identifying cancer-associated ncPEPs is crucial for cancer research. In this work, we propose CoraL, a novel supervised contrastive meta-learning framework for predicting cancer-associated ncPEPs. Specifically, the proposed meta-learning strategy enables our model to learn meta-knowledge from different types of peptides and train a promising predictive model even with few labeled samples. The results show that our model is capable of making high-confidence predictions on unseen cancer biomarkers with only five samples, potentially accelerating the discovery of novel cancer biomarkers for immunotherapy. Moreover, our approach remarkably outperforms existing deep learning models on 15 cancer-associated ncPEPs datasets, demonstrating its effectiveness and robustness. Interestingly, our model exhibits outstanding performance when extended for the identification of short open reading frames derived from ncPEPs, demonstrating the strong prediction ability of CoraL at the transcriptome level. Importantly, our feature interpretation analysis discovers unique sequential patterns as the fingerprint for each cancer-associated ncPEPs, revealing the relationship among certain cancer biomarkers that are validated by relevant literature and motif comparison. Overall, we expect CoraL to be a useful tool to decipher the pathogenesis of cancer and provide valuable information for cancer research. The dataset and source code of our proposed method can be found at https://github.com/Johnsunnn/CoraL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bib/bbad352 | DOI Listing |
Brief Bioinform
September 2023
School of Software, Shandong University, Jinan 250101, China.
NcRNA-encoded small peptides (ncPEPs) have recently emerged as promising targets and biomarkers for cancer immunotherapy. Therefore, identifying cancer-associated ncPEPs is crucial for cancer research. In this work, we propose CoraL, a novel supervised contrastive meta-learning framework for predicting cancer-associated ncPEPs.
View Article and Find Full Text PDFNucleic Acids Res
January 2022
School of Life Sciences, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
As an increasing number of noncoding RNAs (ncRNAs) have been suggested to encode short bioactive peptides in cancer, the exploration of ncRNA-encoded small peptides (ncPEPs) is emerging as a fascinating field in cancer research. To assist in studies on the regulatory mechanisms of ncPEPs, we describe here a database called SPENCER (http://spencer.renlab.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!