Conformationally well-defined supramolecular complexes that can be studied in different solvents provide a platform for separating and quantifying free energy contributions due to functional group interactions and desolvation. Here 1:1 complexes formed between four different calix[4]pyrrole receptors and eleven different pyridine -oxide guests have been used to dissect the factors that govern aromatic interactions with heterocycles in water and in chloroform solution. H NMR spectroscopy shows that the three-dimensional structures of the complexes are fixed by four H-bonding interactions between the pyrrole donors at the bottom of the receptor and the -oxide acceptor on the guest, locking the geometrical arrangement of interacting functional groups in the binding pocket at the other end of the receptor. An aromatic heterocycle on the guest makes two stacking interactions and two edge-to-face interactions with the side walls of the receptor. Chemical double mutant cycles were used to measure the free energy contribution of these four aromatic interactions to the overall stability of the complex. In chloroform, the aromatic interactions measured with pyridine, pyrimidine, furan, thiophene and thiazole are similar to the interactions with a phenyl group, but the effect of introducing a heteroatom depends on where it sits with respect to the aromatic side-walls of the cavity. A nitrogen lone pair directed into a π-face of the side-walls of the binding site leads to repulsive interactions of up to 8 kJ mol. In water, the heterocycle aromatic interactions are all significantly more favourable (by up to 12 kJ mol). For the non-polar heterocycles, furan and thiophene, the increase in interaction energy correlates directly with hydrophobicity, as measured by the free energy of transfer of the heterocycle from -hexadecane into water (Δ°(water-hex)). For the heterocycles with polar nitrogen H-bond acceptors, water can access cracks in the walls of the receptor binding site to solvate the edges of the heterocycles without significantly affecting the geometry of the aromatic interactions, and these nitrogen-water H-bonds stabilise the complexes by about 15 kJ mol. The results highlight the complexity of the solvation processes that govern molecular recognition in water.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10583712 | PMC |
http://dx.doi.org/10.1039/d3sc03824f | DOI Listing |
Nanomicro Lett
January 2025
The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China.
Organic additives with multiple functional groups have shown great promise in improving the performance and stability of perovskite solar cells. The functional groups can passivate undercoordinated ions to reduce nonradiative recombination losses. However, how these groups synergistically affect the enhancement beyond passivation is still unclear.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Chemistry, IIT Dharwad, Dharwad, Karnataka 580007, India.
The favorable redox properties of ferrocene have led to the extensive development of ferrocene-based systems for several electrochemical applications but have scarcely been explored for electrochromism. Here, we report the synthesis and electrochromic properties of novel π-conjugated ferrocene-dicyanovinylene systems (- and -). Monosubstituted (-) and disubstituted (-) compounds have been developed via Knoevenagel condensation of methyl-dicyanovinyl ferrocenes ( or ) with various aromatic aldehydes.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Center of Biomimetic Catalysis and College of chemistry and materials science, School of Environmental and Geographical Sciences. Shanghai Normal University, Shanghai, 200234, People's Republic of China. Electronic address:
Background: Polycyclic aromatic hydrocarbons (PAHs) are one of the most dangerous persistent organic pollutants in the environment. Due to the discharge of chemical plants and domestic water, the existence of PAHs in sea water and lake water is harmful to human health. A method for rapid detection and removal of PAHs in water needs to be developed.
View Article and Find Full Text PDFWater Res
December 2024
Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany. Electronic address:
The complex sorption mechanisms of carbon adsorbents for the diverse group of persistent, mobile, and potentially toxic contaminants (PMs or PMTs) present significant challenges in understanding and predicting adsorption behavior. While the development of quantitative predictive tools for adsorbent design often relies on extensive training data, there is a notable lack of experimental sorption data for PMs accompanied by detailed sorbent characterization. Rather than focusing on predictive tool development, this study aims to elucidate the underlying mechanisms of sorption by applying data analysis methods to a high-quality dataset.
View Article and Find Full Text PDFFood Chem
December 2024
Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon S7N 5A8, Saskatchewan, Canada. Electronic address:
A soluble fraction of faba bean protein was conjugated with tannic acid via the free-radical grafting method using a mixture of ascorbic acid and hydrogen peroxide. Surface plasmon resonance showed a strong bonding between them, while the free amino and thiol group measurements indicated tannic acid's bonding with the amino groups and cysteine residues on the proteins. Structural analysis using intrinsic fluorescence and surface hydrophobicity demonstrated tannic acid's interaction with the aromatic and hydrophobic amino acids of the protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!