Synthesis of olefin-styrene copolymers with defined architecture is challenging due to the limitations associated with the inherent reactivity ratios for these monomers in radical or metal-catalyzed polymerizations. Herein, we developed a straightforward approach to alternating styrene-propylene and styrene-ethylene copolymers by combining radical polymerizations and powerful post-polymerization modification reactions. We employed reversible addition-fragmentation chain transfer (RAFT) copolymerization between styrene derivatives and saccharin (meth)acrylamide to generate alternating copolymers. Once polymerized, the amide bond of the saccharin monomers was highly reactive toward hydrolysis, an observation exploited to obtain alternating styrene-acrylic acid/methacrylic acid copolymers. Subsequent mild decarboxylation of the (meth)acrylic acid groups in the presence of a photocatalyst and a hydrogen source under visible light resulted in the styrene--ethylene/propylene copolymers. Alternating copolymers comprised of either propylene or ethylene units alternating with functional styrene derivatives were also prepared, illustrating the compatibility of this approach for functional polymer synthesis. Finally, the thermal properties of the alternating copolymers were compared to those from statistical copolymer analogs to elucidate the effect of microarchitecture and styrene substituents on the glass transition temperature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10583696PMC
http://dx.doi.org/10.1039/d3sc03827kDOI Listing

Publication Analysis

Top Keywords

alternating copolymers
12
alternating styrene-propylene
8
styrene-propylene styrene-ethylene
8
copolymers
8
styrene-ethylene copolymers
8
styrene derivatives
8
alternating
7
copolymers prepared
4
prepared photocatalytic
4
photocatalytic decarboxylation
4

Similar Publications

RAFT Dispersion Polymerization of 2-Hydroxyethyl Methacrylate in Non-polar Media.

Macromolecules

December 2024

Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.

We report the reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of 2-hydroxyethyl methacrylate (HEMA) in -dodecane using a poly(lauryl methacrylate) (PLMA) precursor at 90 °C. This formulation is an example of polymerization-induced self-assembly (PISA), which leads to the formation of a colloidal dispersion of spherical PLMA-PHEMA nanoparticles at 10-20% w/w solids. PISA syntheses involving polar monomers in non-polar media have been previously reported but this particular system offers some unexpected and interesting challenges in terms of both synthesis and characterization.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is a major cause of death worldwide. This urges the search for alternatives to antibiotics, and antimicrobial polymers hold promise due to their reduced susceptibility to AMR. The topology of such macromolecules has a strong impact on their activity, with bottlebrush architectures outperforming their linear counterparts significantly.

View Article and Find Full Text PDF

This study presents the preparation and electrochemical testing of sulfonated styrene-grafted poly(vinylidene fluoride) (pVDF) copolymers as proton exchange membranes (PEMs) for semi-organic redox flow batteries (RFBs) based on 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/bromine. The copolymers are synthesized via a two-step procedure, involving i) atom transfer radical polymerization of styrene (Sty) for the grafting to the pVDF backbone and ii) the sulfonation of the polystyrene grafted side chains. Copolymers with different amounts of sulfonated styrene (SSty) in the side chains (i.

View Article and Find Full Text PDF

Acid-Enhanced Photoiniferter Polymerization under Visible Light.

Angew Chem Int Ed Engl

December 2024

ETH Zurich, Materials, Vladimir-​Prelog-Weg 1-5/10, 8093, Zürich, SWITZERLAND.

Photoiniferter (PI) is a promising polymerization methodology, often used to overcome restrictions posed by thermal reversible addition-fragmentation chain-transfer (RAFT)  polymerization. However, in the overwhelming majority of reports, high energy UV irradiation is required to effectively trigger photolysis of RAFT agents and facilitate the polymerization, significantly limiting its potential, scope, and applicability. Although visible light PI has emerged as a highly attractive alternative, most current approaches are limited to the synthesis of lower molecular weight polymers, and typically suffer from prolonged reaction times, extended induction periods, and higher dispersities.

View Article and Find Full Text PDF

Preserving positivity in density-explicit field-theoretic simulations.

J Chem Phys

December 2024

Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA.

Field-theoretic simulations are numerical methods for polymer field theory, which include fluctuation corrections beyond the mean-field level, successfully capturing various mesoscopic phenomena. Most field-theoretic simulations of polymeric fluids use the auxiliary field (AF) theory framework, which employs Hubbard-Stratonovich transformations for the particle-to-field conversion. Nonetheless, the Hubbard-Stratonovich transformation imposes significant limitations on the functional form of the non-bonded potentials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!