Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Predicting ventricular arrhythmia Torsade de Pointes (TdP) caused by drug-induced cardiotoxicity is essential in drug development. Several studies used single biomarkers such as qNet and Repolarization Abnormality (RA) in a single cardiac cell model to evaluate TdP risk. However, a single biomarker may not encompass the full range of factors contributing to TdP risk, leading to divergent TdP risk prediction outcomes, mainly when evaluated using unseen data. We addressed this issue by utilizing multi- features from a population of human ventricular cell models that could capture a representation of the underlying mechanisms contributing to TdP risk to provide a more reliable assessment of drug-induced cardiotoxicity. We generated a virtual population of human ventricular cell models using a modified O'Hara-Rudy model, allowing inter-individual variation. and Hill coefficients from 67 drugs were used as input to simulate drug effects on cardiac cells. Fourteen features (, , , , , , , , , , , , qNet, qInward) could be generated from the simulation and used as input to several machine learning models, including k-nearest neighbor (KNN), Random Forest (RF), XGBoost, and Artificial Neural Networks (ANN). Optimization of the machine learning model was performed using a grid search to select the best parameter of the proposed model. We applied five-fold cross-validation while training the model with 42 drugs and evaluated the model's performance with test data from 25 drugs. The proposed ANN model showed the highest performance in predicting the TdP risk of drugs by providing an accuracy of 0.923 (0.908-0.937), sensitivity of 0.926 (0.909-0.942), specificity of 0.921 (0.906-0.935), and AUC score of 0.964 (0.954-0.975). According to the performance results, combining the electrophysiological model including inter-individual variation and optimization of machine learning showed good generalization ability when evaluated using the unseen dataset and produced a reliable drug-induced TdP risk prediction system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584148 | PMC |
http://dx.doi.org/10.3389/fphys.2023.1266084 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!