Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Quality indicators play an essential role in a learning health system. They help healthcare providers to monitor the quality and safety of care delivered and to identify areas for improvement. Clinical quality indicators, therefore, need to be based on real world data. Generating reliable and actionable data routinely is challenging. Healthcare data are often stored in different formats and use different terminologies and coding systems, making it difficult to generate and compare indicator reports from different sources.
Methods: The Observational Health Sciences and Informatics community maintains the Observational Medical Outcomes Partnership Common Data Model (OMOP). This is an open data standard providing a computable and interoperable format for real world data. We implemented a Computable Biomedical Knowledge Object (CBK) in the Piano Platform based on OMOP. The CBK calculates an inpatient quality indicator and was illustrated using synthetic electronic health record (EHR) data in the open OMOP standard.
Results: The CBK reported the in-hospital mortality of patients admitted for acute myocardial infarction (AMI) for the synthetic EHR dataset and includes interactive visualizations and the results of calculations. Value sets composed of OMOP concept codes for AMI and comorbidities used in the indicator calculation were also created.
Conclusion: Computable biomedical knowledge (CBK) objects that operate on OMOP data can be reused across datasets that conform to OMOP. With OMOP being a widely used interoperability standard, quality indicators embedded in CBKs can accelerate the generation of evidence for targeted quality and safety management, improving care to benefit larger populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10582239 | PMC |
http://dx.doi.org/10.1002/lrh2.10388 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!