Introduction: Cancer stem cells (CSCs) are incriminated for initiating the process of carcinogenesis either de novo or through the transformation of oral potentially malignant disorders (OPMDs) to oral squamous cell carcinoma (OSCC). The aim of this study was to detect the expression of embryonic-type CSC markers OCT3/4 and SOX2 in OSCCs and oral leukoplakias (OLs), the most common of OPMDs.

Materials And Methods: The study type is experimental, and the study design is characterized as semiquantitative research, which belongs to the branch of experimental research. The experiment was conducted in the Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Greece. This study focuses on the semiquantitative immunohistochemical (IHC) pattern of expression of CSCs protein-biomarkers SOX2 and OCT3/4, in paraffin embedded samples of 21 OSCCs of different grades of differentiation and 30 cases of OLs with different grades of dysplasia, compared to five cases of normal oral mucosa in both terms of cells' stain positivity and intensity. Statistical analysis was performed through SPSS 2017 Pearson Chi-square and the significance level was set at 0.05 (p=0.05). The expression of the respective genes of SOX2 and OCT3/4 was studied through quantitative polymerase chain reaction (qPCR), in paraffin-embedded samples of 12 cases of OLs with mild/non dysplasia and 19 cases moderately/poorly differentiated OSCCs(n=19) and five normal mucosa using the Independent Paired T-test.

Results: The genes SOX2 and Oct3/4 were expressed in all examined cases although no statistically significant correlations among normal, OL and OSCC, were established. A nuclear/membrane staining of OCT3/4 was noticed only in three out of 21 OSCCs but in none of OLs or normal cases (without statistical significance). A characteristic nuclear staining of SOX2 was noticed in the majority of the samples, mostly in the basal and parabasal layers of the epithelium. SOX2 was significantly detected in the OSCCs group (strong positivity in 17/21) than in the OL group (30 cases, mostly mildly stained) (p-value=0.007), and the normal oral epithelium (mild stained, p=0.065). Furthermore, SOX2 was overexpressed in well differentiated OSCCs group (5/OSCCs, strongly stained) rather than in mildly dysplastic and non-dysplastic OLs samples (14/OLs, mildly stained) (p-value =0.035).

Conclusion: The characteristic expression of SOX2 but not of OCT3/4 in OLs' and OSCCs' lesions suggests the presence of neoplastic cells with certain CSC characteristics whose implication in the early stages of oral tumorigenesis could be further evaluated. The clinical use of SOX2, as prognostic factor, requires further experimental evaluation in larger number of samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584277PMC
http://dx.doi.org/10.7759/cureus.45482DOI Listing

Publication Analysis

Top Keywords

sox2 oct3/4
20
sox2
10
cancer stem
8
oral
8
oral leukoplakias
8
squamous cell
8
cases ols
8
normal oral
8
genes sox2
8
osccs group
8

Similar Publications

Establishing of human induced pluripotent stem cell line DMSCi002-A from the hematopoietic stem cells of a healthy male donor.

Stem Cell Res

January 2025

Advanced Therapy Medicinal Product Center, Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand. Electronic address:

Using the integration-free episomal vector containing the reprogramming components OCT3/4/shp53, Sox2/KLF4, L-MYC/LIN28, and EBNA-1, hematopoietic stem cells obtained from a healthy 33-year-old man were effectively reprogrammed and turned into induced pluripotent stem cells (iPSCs). The reprogrammed iPSCs were grown without the use of feeders. They exhibited a normal karyotype, displayed pluripotency markers, and differentiated into cells from the three germ layers.

View Article and Find Full Text PDF

STEMIN and YAP5SA, the future of heart repair?

Exp Biol Med (Maywood)

November 2024

Department of Biology and Biochemistry, University of Houston, Houston, TX, United States.

This review outlines some of the many approaches taken over a decade or more to repair damaged hearts. We showcase the recent breakthroughs in organ regeneration elicited by reprogramming factors OCT3/4, SOX2, KLF4, and C-MYC (OKSM). Transient OKSM transgene expression rejuvenated senescent organs in mice.

View Article and Find Full Text PDF

Hematopoietic stem cell isolated from a healthy 39-year-old woman were successfully reprogrammed and transformed into induced pluripotent stem cell (iPSCs) by using the integration-free episomal vector included OCT3/4/shp53, Sox2/KLF4, L-MYC/LIN28 and EBNA-1 reprogramming factors. The transformed iPSC lines were cultured and expanded under feeder-free condition. They demonstrated the normal karyotype, expressed pluripotency markers and differentiated into cells derived from the three germ layers.

View Article and Find Full Text PDF

Primary fibroblasts from six individuals with CLN3-related conditions were used to generate induced pluripotent stem cell (iPSC) lines CHDTRi001-B, CHDTRi002-B, CHDTRi003-A, CHDTRi004-B, CHDTRi005-A, and CHDTRi006-E through the expression of four reprogramming factors: human OCT3/4, KLF4, SOX2, and c-MYC. The iPSC lines were characterized to confirm their pluripotency via immunocytochemistry, flow cytometry, and teratoma formation. Genomic stability, cell line identity, and CLN3 genotype were confirmed.

View Article and Find Full Text PDF

Purpose: Tumor initiating cells (TICs) or cancer stem cells (CSCs) are considered to be the main culprit of hepatocellular carcinoma (HCC) initiation and progression, nevertheless the mechanism by which tumor microenvironment maintains the HCC 'stemness' is not fully understood. This study aims to investigate the effect of regulatory T cells (Tregs) on the TICs characteristics of HCC.

Methods: Immunocytochemistry, flow cytometry, real-time PCR, western blot, in vitro sphere-formation, and in vivo tumorigenesis assay were used to detect HCC 'stemness'.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!