Even though many of the approved drugs still have high systemic toxicity due to a lack of tumor selectivity and present pharmacokinetic drawbacks, like low water solubility, that negatively influence the drug circulation time and bioavailability, the anti-cancer study has produced commendable results in recent years. The stability tests carried out under stressful exposure to high temperatures, hydrolytic media, or light sources during their development or under moderate settings have shown the vulnerability of anti-cancer medications to various factors. Because of this, the development of degradation products is considered hospital waste in pharmaceutical formulations and the environment. Until now, various formulations have been created for attaining tissue-specific therapeutic targeting, lowering harmful side effects, and enhancing drug stability. To boost the specificity, efficiency, and durability of active molecules that are targeted in cancer therapy the invention of prodrugs is the potential approach. The latest study illustrates that the solubility, pharmacokinetics, cellular uptake, and stability of chemotherapy drugs can be improved through the incorporation of them into vesicular systems, such as polymeric micelles or cyclodextrins, or via nanocarriers containing chemotherapeutics linked to monoclonal antibodies. In this review article, we provide an overview of the most recent advances in the field of designing very stable prodrugs or nanosystems that are powerful anti-cancer medications and their actions on the body.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584278 | PMC |
http://dx.doi.org/10.7759/cureus.45474 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!