Multiple myeloma (MM) is a malignant plasma cell disease that is the second most prevalent hematological malignancy in high-income nations and accounts for around 1.8% of all cancers and 18% of hematologic malignancies in the United States. In this research, we try to design a machine learning framework for MM diagnosis from multi characteristic indexes using slime mould Runge Kutta Optimizer (MSRUN) and kernel extreme learning machine, which is called as MSRUN-KELM. An efficient slime mould learning operator is introduced to the initial Runge Kutta Optimizer in MSRUN, ensuring that the trade-off between intensity and diversity is satisfied. The MSRUN was evaluated using IEEE CEC2014 benchmark functions, and the statistical results indicate a significant increase in the search performance of MSRUN. In MSRUN-KELM, kernel extreme machine learning is constructed on MM from multi-characteristic indexes with MSRUN, parameter optimization, and feature selection synchronized by MSRUN. The results of MSRUN-KELM on MM are accuracy of 93.88%, a Matthews correlation coefficient of 0.922677, and sensitivities of 93.41% and 93.19%. The suggested MSRUN-KELM may be utilized to analyze MM from multi-characteristic indexes well, and it can be treated as a potential tool for MM diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2022.106189DOI Listing

Publication Analysis

Top Keywords

machine learning
12
runge kutta
12
kutta optimizer
12
multiple myeloma
8
multi characteristic
8
characteristic indexes
8
slime mould
8
optimizer msrun
8
kernel extreme
8
msrun msrun-kelm
8

Similar Publications

Background: The impact of aortic arch (AA) morphology on the management of the procedural details and the clinical outcomes of the transfemoral artery (TF)-transcatheter aortic valve replacement (TAVR) has not been evaluated. The goal of this study was to evaluate the AA morphology of patients who had TF-TAVR using an artificial intelligence algorithm and then to evaluate its predictive value for clinical outcomes.

Materials And Methods: A total of 1480 consecutive patients undergoing TF-TAVR using a new-generation transcatheter heart valve at 12 institutes were included in this retrospective study.

View Article and Find Full Text PDF

Importance: Biomarkers would greatly assist decision-making in the diagnosis, prevention, and treatment of chronic pain.

Objective: To undertake analytical validation of a sensorimotor cortical biomarker signature for pain consisting of 2 measures: sensorimotor peak alpha frequency (PAF) and corticomotor excitability (CME).

Design, Setting, And Participants: This cohort study at a single center (Neuroscience Research Australia) recruited participants from November 2020 to October 2022 through notices placed online and at universities across Australia.

View Article and Find Full Text PDF

Current approaches for classifying biosensor data in diagnostics rely on fixed decision thresholds based on receiver operating characteristic (ROC) curves, which can be limited in accuracy for complex and variable signals. To address these limitations, we developed a framework that facilitates the application of machine learning (ML) to diagnostic data for the binary classification of clinical samples, when using real-time electrochemical measurements. The framework was applied to a real-time multimeric aptamer assay (RT-MAp) that captures single-frequency (12.

View Article and Find Full Text PDF

Parkinson Disease (PD) is a complex neurological disorder attributed by loss of neurons generating dopamine in the SN per compacta. Electroencephalogram (EEG) plays an important role in diagnosing PD as it offers a non-invasive continuous assessment of the disease progression and reflects these complex patterns. This study focuses on the non-linear analysis of resting state EEG signals in PD, with a gender-specific, brain region-specific, and EEG band-specific approach, utilizing recurrence plots (RPs) and machine learning (ML) algorithms for classification.

View Article and Find Full Text PDF

Deep Learning of CYP450 Binding of Small Molecules by Quantum Information.

J Chem Inf Model

January 2025

Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, Indiana 47907, United States.

Drug-drug interaction can lead to diminished therapeutic effects or increased toxicity, posing significant risks, especially in polypharmacy, and cytochrome P450 plays an indispensable role in this interaction. Cytochrome P450, responsible for the metabolism and detoxification of most drugs, metabolizes about 90% of Food and Drug Administration-approved drugs, making early detection of potential drug-drug interactions. Over the years, in-silico modeling has become a valuable tool for predicting drug-drug interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!