The low-orbit satellite communication can provide users with low-delay and ultra-wideband communication services worldwide. By the wide available bandwidth and immunity to interference, free-space optical (FSO) feeder links are presented as an ideal alternative to radio frequency (RF) feeder links for satellite-to-ground backhaul, and the space-ground integrated optical network (SGION) is gradually formed by using FSO feeder links to integrate the low-orbit satellites and the terrestrial optical network (TON) for backhaul services. The propagation channel characteristics of FSO feeder links vary significantly during low-orbit satellite passes, and atmospheric turbulence causes serious scintillation in FSO feeder links at low elevations, increasing link budget and restricting link capacity. Limiting the observation range of optical ground stations (OGSs) to the high elevation area can establish high-capacity feeder links to improve SGION's throughput, but inevitably increase the network dynamics and reduce the satellite visibility. This paper trades off SGION's throughput and dynamics by planning FSO feeder link handover and capacity adjustment. Two baseline schemes and the feeder link handover and capacity adjustment scheme based on non-dominated sorting genetic algorithm (NSGA-FLHCA) are proposed. By finding the Pareto edge of the multi-objective optimization problem, NSGA-FLPCA is more effective in improving network throughput and reducing network dynamics compared with two baselines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.501650 | DOI Listing |
Environ Sci Pollut Res Int
May 2024
Department of Electrical and Electronics Engineering, KSR College of Engineering, Thiruchengode, Tamil Nadu, India.
This paper, a hybrid method, is proposed for protecting the hybrid photovoltaic (PV) and wind turbine (WT) system. The proposed protecting method is the hybrid wrapper of both the multiple support vector machine (MSVM) and firebug swarm optimization (FSO), commonly named as MSVM-FSO method. The proposed technique is diagnosing the appropriate fault occurring in the hybrid system.
View Article and Find Full Text PDFThe low-orbit satellite communication can provide users with low-delay and ultra-wideband communication services worldwide. By the wide available bandwidth and immunity to interference, free-space optical (FSO) feeder links are presented as an ideal alternative to radio frequency (RF) feeder links for satellite-to-ground backhaul, and the space-ground integrated optical network (SGION) is gradually formed by using FSO feeder links to integrate the low-orbit satellites and the terrestrial optical network (TON) for backhaul services. The propagation channel characteristics of FSO feeder links vary significantly during low-orbit satellite passes, and atmospheric turbulence causes serious scintillation in FSO feeder links at low elevations, increasing link budget and restricting link capacity.
View Article and Find Full Text PDFHighly efficient coherent beam combining (CBC) of two very-high-power optical amplifiers (VHPOA) with applications to long-range FSO communications such as ground-to-space feeder links is presented. The CBC setup is designed to minimize the telecom signal degradation, with a polarization beam splitter used to minimize the power fluctuations and to control the output polarization state of the beam. The system delivers 80 W output power and is proven to be compatible with 25 Gb/s telecom signals with a less than 1 dB power penalty.
View Article and Find Full Text PDFLight Sci Appl
June 2023
ETH Zurich, Institute of Electromagnetic Fields (IEF), Gloriastrasse 35, 8092, Zürich, Switzerland.
Free-space optical (FSO) communication technologies constitute a solution to cope with the bandwidth demand of future satellite-ground networks. They may overcome the RF bottleneck and attain data rates in the order of Tbit/s with only a handful of ground stations. Here, we demonstrate single-carrier Tbit/s line-rate transmission over a free-space channel of 53.
View Article and Find Full Text PDFSensors (Basel)
June 2021
Department of Communications and Networking, Aalto University, 02150 Espoo, Finland.
The verticals of 5G, such as the automotive, smart grid, and smart cities sectors, will bring new sensors and IoT devices requiring Internet connectivity. Most of these machine-type terminals will be sparsely distributed, covering a very large geographical area and, from time to time, will have to update their software, firmware, and/or other relevant data. Given this situation, one viable solution to implement the "Over-the-Air" update of these IoT terminals can be done with the aid of GEO satellite systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!