Photonics lanterns (PLs) provide an effective mode diversity solution to mitigate atmospheric turbulence interference in free-space optical communications (FSOC). This paper presents mode-mismatching multimode photonic lanterns (MM-PLs) for diversity receiver in satellite-to-ground downlink scenarios. Our study evaluates the coupling characteristics of the mode-selective PLs (MSPLs) and non-mode-selective PLs (NSPLs) for the influence of strong-to-weak turbulence and confirms that MSPLs outperform NSPLs under weak turbulence conditions. The research further explores the impact of fiber position error (FPE) on the spatial light-to-fiber coupling, including the optimal focal length deviation and lateral offset of receiving fiber devices. We have calculated and compared the coupling power and signal-to-noise ratio (SNR) of few-mode PLs (FM-PLs) and MM-PLs for various turbulence intensities. The results indicate that the optimal focal length tolerance, which corresponds to a decrease of approximately 1 dB in the average coupling power, is 2-3 m and 5-6 m for FM-PLs and MM-PLs, respectively. Furthermore, regardless of whether it is strong or weak turbulence, MM-PL exhibits a lateral offset tolerance exceeding 12 µm for a 0.5 dB drop in the mean coupled power, whereas the lateral offset tolerance of FM-PL is only 3 µm under weak turbulence. Additionally, the decrease in the average SNR of MM-PLs is gentle, only 0.67-1.16 dB at a 12 µm offset under weak turbulence, whereas there is a significant reduction of 6.50-8.49 dB in the average SNR of FM-PLs. These findings demonstrate the superiority of MM-PLs over FM-PLs in turbulence resistance and fiber position tolerance in the satellite-ground downlink.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.502844 | DOI Listing |
Free space optical communication (FSOC) technology can be used for data transmission between ocean islands as backup wireless communication networks to cope with traffic surges and emergencies. In this paper, we experimentally demonstrate the results of a 24-h real-time single-wavelength 2.5-Gbps FSOC between two islands 29 km apart at a low altitude with low complexity.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
We observe an inverse turbulent-wave cascade, from small to large length scales, in a driven homogeneous 2D Bose gas. Starting with an equilibrium condensate, we drive the gas isotropically on a length scale much smaller than its size, and observe a nonthermal population of modes with wavelengths larger than the drive one. At long drive times, the gas exhibits a steady nonthermal momentum distribution.
View Article and Find Full Text PDFSpeech disorders related to cleft lip and palate exhibit different degrees of involvement and can occur even after primary palate repair. Hypernasality can be present as a result of velopharyngeal insufficiency, as well as nasal emission, weak pressure, articulatory errors and facial grimace, affecting speech intelligibility. Palatoplasty outcomes can be variable, and among the influencing factors are the surgical technique, the surgeon's experience, the postoperative care, and the patient/cleft characteristics.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Skolkovo Institute of Science and Technology, 121205, Moscow, Russia.
Direct numerical simulation of three-dimensional acoustic turbulence has been performed for both weak and strong regimes. Within the weak turbulence, we demonstrate the existence of the Zakharov-Sagdeev spectrum ∝k^{-3/2} not only for weak dispersion but in the nondispersion (ND) case as well. Such spectra in the k space are accompanied by jets in the form of narrow cones.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Science and Technology on Electromechanical Dynamic Control Laboratory, Xi'an 710065, China.
Complex aerodynamic characteristics and optimal control during the attitude transition of tilt-powered coaxial twin-rotor unmanned aerial vehicles (UAVs) represent key challenges in flight control design. This study investigates aerodynamic mechanisms and control parameter optimization during the transition of UAVs from vertical to forward flight. By establishing a dynamic model and combining theoretical and numerical analyses, the optimal rotor spacing is determined to be h = 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!