In this paper, we propose an optical module, consisting of an Erbium/Ytterbium co-doped fiber amplifier (EYDFA) and a cascaded periodically poled lithium niobate (cascaded-PPLN), to bridge the conventional telecommunication and the emerging underwater wireless optical communication (UWOC). Compared with using two discrete crystals to achieve the third harmonic generation (THG), using a cascaded crystal simplifies the optical system. Under a fundamental power of 5 W at 1550 nm, we have generated an optical power of 6.54 mW at 516 nm, corresponding to a conversion efficiency of 0.1308%. Furthermore, we added a 5-km single-mode fiber (SMF) before the EYDFA, and by adjusting the seed laser power, we successfully maintained the efficiency of the THG process and the output power of the green light. Afterwards, the nonlinearity of the THG process is analyzed, and a simplified nonlinear pre-compensation method has been proposed to tailor the 4-pulse amplitude modulation (PAM4) signals. In such case, the bit error rate (BER) of the modified PAM4 (m-PAM4) can reduce by 69.3% at a data rate of 12 Gbps. Finally, we demonstrate the practicality of our proposed system by achieving a 7-m UWOC transmission in a water tank at a data rate of 13.46 Gbps in an optical dark room. This result demonstrates the feasibility of the hybrid fiber/UWOC system, highlighting its potential for practical implementation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.499203 | DOI Listing |
Nanomaterials (Basel)
December 2024
College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
In this paper, InSe nanosheets were synthesized by a ball milling method, and photoelectrochemical-type photodetectors (PEC PDs) based on the ball milling InSe (M-InSe) were fabricated using simulated seawater as the electrolyte. M-InSe nanosheets show good absorption in the visible region of 450-600 nm. The M-InSe PEC PDs display a good self-powered photoresponse under 525 nm irradiation, including a high responsivity of 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33101 Tampere, Finland.
The quest for small-scale, remotely controlled soft robots has led to the exploration of magnetic and optical fields for inducing shape morphing in soft materials. Magnetic stimulus excels when navigation in confined or optically opaque environments is required. Optical stimulus, in turn, boasts superior spatial precision and individual control over multiple objects.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
In recent years, wireless sensor networks have been widely used, especially in three-dimensional environments such as underwater and mountain environments. However, in harsh environments, wireless sensor networks may be damaged and split into many isolated islands. Therefore, restoring network connectivity to transmit data effectively in a timely manner is particularly important.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Key Laboratory of Internet Information Retrieval of Hainan Province, School of Cyberspace Security, Hainan University, 58 Renmin Avenue, Haikou 570228, China.
Underwater wireless sensor networks have a wide range of application prospects in important fields such as ocean exploration and underwater environment monitoring. However, the influence of complex underwater environments makes underwater wireless sensor networks subject to many limitations, such as resource limitation, channel openness, malicious attacks, and other problems. To address the above issues, we propose a routing scheme for underwater wireless networks based on a trust model and Void-Avoided algorithm.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
Photoelectrochemical photodetectors (PEC PDs) are promising in underwater optoelectronic devices because of their low cost, good sensitivity, and self-powered characteristics. However, achieving high-performance omnidirectional visible PEC PDs using seawater as the electrolyte is still challenging, hindering their practical application. This work successfully synthesized CuO nanobelt arrays (NAs) on a linear copper wire via a low-temperature solution method with an annealing process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!