A two-dimensional geometrical waveguide enables ultra-thin augmented reality (AR) near-eye display (NED) with wide field of view (FOV) and large exit-pupil diameter (EPD). A conventional design method can efficiently design waveguides that meet the requirements, but is unable to fully utilize the potential display performance of the waveguide. A forward-ray-tracing waveguide design method with maximum FOV analysis is proposed, enabling two-dimensional geometrical waveguides to achieve their maximum FOV while maintaining minimum dimensions. Finally, the designed stray-light-suppressed waveguide NED has a thickness of 1.7 mm, a FOV of 50.00°H × 29.92°V, and an eye-box of 12 mm × 12 mm at an eye-relief of 18 mm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.498011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!