Due to a great many superior features of infrared light communication (ILC), like high capacity and strong privacy, ILC is considered a potential candidate for serving the high demands of beyond fifth-generation/sixth-generation (B5G/6 G) communication systems. However, the terminal's limited field-of-view (FOV) induces great difficulty in establishing line-of-sight (LoS) link between the transceiver and the terminal. In this paper, we propose a wide-FOV auto-coupling optical antenna system that utilizes a wide-FOV telecentric lens to collect incident infrared beams and automatically couple them into a specific single-mode-fiber (SMF) channel of fiber array and optical switch. The performance of this optical antenna system is assessed through simulation and manual alignment operation, and validated by automatic alignment results. A coupling loss of less than 10.6 dB within a FOV of 100° for both downstream and upstream beams in C band is demonstrated by the designed system. Furthermore, we establish a bidirectional optical wireless communications (OWC) system employing this antenna and a fiber-type modulating retro-reflector (MRR) system in the terminal. Both 10-Gbps on-off keying (OOK) downstream and upstream transmissions are successfully realized with the FOV of up to 100° in C band where the measured bit-error-rate (BER) is lower than 3.8 × 10. To the best of our knowledge, this is a brand-new auto-coupling optical antenna system with the largest FOV in ILC automatic alignment works in terminals that have ever been reported.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.497300 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!