Carrier frequency offset (CFO) estimation is very important for the optical fiber communications and has been studied widely in linear coherent systems, while only a few works have been reported for nonlinear Fourier transform (NFT) based systems. In continuous spectrum (CS) modulation nonlinear frequency division multiplexing (CS-NFDM) systems, frequency offset (FO) has a great influence on its performance, requiring an improved frequency offset estimation (FOE) method. We found that the oversampling rate R adopted in NFDM to ensure the accuracy of the NFT and inverse NFT (INFT) calculations, would cause the estimation accuracy of the traditional FFT-FOE method to decrease by R times. Moreover, CS-NFDM signals with higher baud rate require more subcarriers and then result in an oversampling factor greater than 16. This makes the traditional FFT-FOE method be ineffective to use the common training sequence (TS) overhead to meet the FOE error requirement of CS-NFDM system. Therefore, a modified FOE method based on FFT assisted by TS and autocorrelation has been proposed. The theoretical analysis and simulation results show that the proposed method is applicable to CS-NFDM system, no matter what modulation format is used. For 512 subcarriers, with a high rate of 70GBaud and the TS length of 8192, the proposed method can obtain a minimum FO estimation error about 0.1 MHz, which is better than the other two typical FFT-FOE and Schmidl & Cox methods. In addition, the proposed method can save at least 87.5% and 50% overhead. Thus, the proposed method has obvious improvement for CS-NFDM system with requiring high oversampling rate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.489102 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!