We numerically investigate the excitation of vector solitonic pulse with orthogonally polarized components via free-carrier effects in microresonators with normal group velocity dispersion (GVD). The dynamics of single, dual and oscillated vector pulses are unveiled under turn-key excitation with a single frequency-fixed CW laser source. Parameter spaces associated with detuning, polarization angle, interval between the pumped orthogonal resonances and pump amplitude have been revealed. Different vector pulse states can also be observed exploiting the traditional pump scanning scheme. Simultaneous and independent excitation regimes are identified due to varying interval of the orthogonal pump modes. The nonlinear coupling between two modes contributes to the distortion of the vector pulses' profile. The free-carrier effects and the pump polarization angle provide additional degrees of freedom for efficiently controlling the properties of the vector solitonic microcombs. Moreover, the crucial thermal dynamics in microcavities is discussed and weak thermal effects are found to be favorable for delayed vector pulse formation. These findings reveal complex excitation mechanism of solitonic structures and could provide novel routes for microcomb generation.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.498671DOI Listing

Publication Analysis

Top Keywords

vector solitonic
12
free-carrier effects
8
polarization angle
8
vector pulse
8
vector
7
excitation
5
solitonic pulses
4
pulses excitation
4
excitation microresonators
4
microresonators free
4

Similar Publications

Tunable Multisoliton State Ultrafast Fiber Laser Based on NiSe and Generation of Vector Dual-Wavelength Solitons.

ACS Appl Mater Interfaces

January 2025

College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an 311300, China.

As a member of the chalcogenide family, NiSe exhibits a direct bandgap of 1.74 eV, making it a promising candidate for nonlinear optical devices. However, its potential in the near-infrared region of the telecommunication band has not been fully explored.

View Article and Find Full Text PDF

This paper investigates the geometric and structural properties of almost plastic pseudo-Riemannian manifolds, with a specific focus on three-dimensional cases. We explore the interplay between an almost plastic structure and a pseudo-Riemannian metric, providing a comprehensive analysis of the conditions that define pure metric plastic -Kählerian manifolds. In this context, the fundamental tensor field is symmetric and also represents another pure metric.

View Article and Find Full Text PDF

Soliton molecules, or also known as optical bound states, are the most representative example of solitons' particle nature and have given birth to diverse light-matter analogies. Despite detailed research on regular bound states, the soliton molecule synthesis of dissimilar pulses has rarely been reported. Here, soliton molecules formed by dissimilar dissipative solitons are demonstrated in a single-mode mode-locked fiber laser, with an in-depth analysis of their evolution dynamics.

View Article and Find Full Text PDF

Classification of beating solitons, their physical spectra, and second-order nonlinear superpositions.

Phys Rev E

October 2024

Department of Fundamental and Theoretical Physics, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia.

Article Synopsis
  • * Analysis of these solutions revealed that moving beating solitons exhibit asymmetric spectra, while static ones show symmetry regarding frequency change.
  • * We explored second-order vector beating soliton solutions with varying velocities, and numerical simulations supported our findings.
View Article and Find Full Text PDF

The generation of tailored supercontinua is essential for studying ultrafast light-matter interactions and for a variety of practical applications requiring broadband light. Liquid-core fibers (LCFs) have emerged as an innovative nonlinear photonic platform, demonstrating high efficiency in nonlinear frequency conversion. In this study, we showcase that LCFs provide a stable platform for ultrafast supercontinuum generation in a selected higher-order vector mode at .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!