Turbot (Scophthalmus maximus) is a commercially important marine flatfish for global aquaculture. With intensive farming, turbot production is limited by several diseases, in which Aeromonas salmonicida and Edwardsiella tarda are two main causative agents. Vaccination is an effective and safe alternative to disease prevention compared to antibiotic treatment. In the previous study, we developed an inactivated bivalent vaccine against A. salmonicida and E. tarda with relative percent survival (RPS) of 77.1 %. To understand the protection mechanism in molecular basis of the inactivated bivalent vaccine against A. salmonicida and E. tarda, we use RNA-seq to analyze the transcriptomic profile of the kidney tissue after immunization. A total of 391,721,176 clean reads were generated in nine libraries by RNA-seq, and 96.35 % of the clean reads were mapped to the reference genome of S. maximus. 1458 (866 upregulated and 592 downregulated) and 2220 (1131 upregulated and 1089 downregulated) differentially expressed genes (DEGs) were obtained at 2 and 4 weeks post-vaccination, respectively. The DEGs were enriched in several important immune-related GO terms, including cytokine activity, immune response, and defense response. In addition, the analysis of several immune-related genes showed upregulation and downregulation, including pattern recognition receptors, complement system, cytokines, chemokines and immune cell surface markers. Eight DEGs (ccr10, calr, casr, mybpha, cd28, thr18, cd20a.3 and c5) were randomly selected for qRT-PCR analysis, which confirmed the validity of the RNA-seq. Our results provide valuable insight into the immune mechanism of inactivated bivalent vaccine against A. salmonicida and E. tarda in Scophthalmus maximus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2023.109174 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!