The highly conserved miR396 plays a pivotal role in the growth, development, and responses to abiotic and biotic stresses in plants. However, research on miR396 and its targets in Jerusalem artichoke remains largely unexplored. In this study, we employed bioinformatics and experimental techniques, such as cloning and qRT-PCR, to investigate the regulatory role of miR396 on its targets, leveraging our lab's transcriptomic and degradomic data of Jerusalem artichoke. Specifically, we initially cloned and characterized the precursors (htu-MIR396a/b/c) and mature sequences (htu-miR396a/b/c) of three miR396 isoforms. Subsequently, we identified nine target genes, including seven Growth-Regulating Factors (GRFs) (HtGRF3/4/6/9/10/12/13), one WRKY transcription factor (HtWRKY40), and one Scarecrow-like (SCL) transcription factor (HtSCL33). Finally, we conducted an analysis of their expression patterns across various tissues and their responses to temperature stress. Notably, htu-MIR396s exhibited high expression in seedling stems, while htu-miR396s predominantly expressed in seedling leaves. Moreover, HtWRKY40 and HtSCL33 displayed higher expression levels than HtGRFs in most tissues, except leaves. Remarkably, HtGRF4/6/10/12/13 exhibited higher expression in leaves than in roots and stems during seedling growth. Furthermore, during tuber development, HtGRF4/6/10, HtWRKY40, and HtSCL33 were highly expressed, while HtGRF3/9/12/13 showed relatively lower expression levels. Under heat stress (42℃), htu-MIR396 expression was up-regulated, and htu-miR396 showed dynamic expression patterns in seedlings, resulting in the induction of HtGRF4/6/10/12/13 in leaves and HtSCL33 in roots, while HtWRKY40 in leaves was repressed. Conversely, under cold stress (4℃), htu-MIR396s showed fluctuating expression levels, and htu-miR396s were up-regulated in seedlings. Notably, HtGRF4/13 and HtSCL33 in seedlings were reduced, whereas HtGRF6 in roots and HtWRKY40 in leaves were enhanced. These findings offer valuable insights into the functional roles of miR396-target interactions under abiotic stress in Jerusalem artichoke.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2023.147908 | DOI Listing |
J Nematol
March 2024
Department of Entomology and Nematology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, 33598, USA.
Many root-knot nematode (RKN) species in the genus occur in Florida, including , a species able to overcome RKN resistance genes in many crops. The distribution of these nematodes in horticultural crops is not well known. A RKN survey was conducted in South and Central Florida aiming to: (i) identify RKN infecting vegetables, fruit, and other crops; (ii) document host plants; (iii) determine RKN distribution; and (iv) gain insight on the relatedness of obtained in this study with other populations from the USA and other countries.
View Article and Find Full Text PDFPlant Dis
January 2025
USDA-ARS North Central Agricultural Research Laboratory, Brookings, South Dakota, United States;
Soilborne diseases are persistent problems in soybean production. Long-term crop rotation can contribute to soilborne disease management. However, the response of soilborne pathogens to crop rotation is inconsistent, and rotation efficacy is highly variable.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
January 2025
Department of Dairy Technology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India.
The Jerusalem artichoke (JA), a plantrelated to sunflowers and native to North America, has long been valued for its versatility, especially during periods of food scarcity. This resilient crop serves multiple purposes, functioning as a vegetable, medicinal herb, grazing crop, and even a biofuel source. In recent years, interest in JA has grown, largely due to its high nutritional profile and associated health benefits.
View Article and Find Full Text PDFBMC Microbiol
January 2025
USDA-ARS, Sustainable Agricultural Systems Laboratory, Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA.
Background: Pseudomonas syringae pv. tagetis (Pstag) causes apical chlorosis on sunflower and various other plants of the Asteraceae family. Whole genome sequencing of Pstag strain EB037 and transposon-mutant derivatives, no longer capable of causing apical chlorosis, was conducted to improve understanding of the molecular basis of disease caused by this pathogen.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!