Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ferredoxins (FDXs) are evolutionarily conserved iron-sulfur (Fe-S) proteins that function as electron transfer proteins in diverse metabolic pathways. Mammalian mitochondria contain two ferredoxins, FDX1 and FDX2, which share a high degree of structural similarity but exhibit different functionalities. Previous studies have established the unique role of FDX2 in the biogenesis of Fe-S clusters; however, FDX1 seems to have multiple targets in vivo, some of which are only recently emerging. Using CRISPR-Cas9-based loss-of-function studies in rat cardiomyocyte cell line, we demonstrate an essential requirement of FDX1 in mitochondrial respiration and energy production. We attribute reduced mitochondrial respiration to a specific decrease in the abundance and assembly of cytochrome c oxidase (CcO), a mitochondrial heme-copper oxidase and the terminal enzyme of the mitochondrial respiratory chain. FDX1 knockout cells have reduced levels of copper and heme a/a, factors that are essential for the maturation of the CcO enzyme complex. Copper supplementation failed to rescue CcO biogenesis, but overexpression of heme a synthase, COX15, partially rescued COX1 abundance in FDX1 knockout cells. This finding links FDX1 function to heme a biosynthesis, and places it upstream of COX15 in CcO biogenesis like its ancestral yeast homolog. Taken together, our work has identified FDX1 as a critical CcO biogenesis factor in mammalian cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451897 | PMC |
http://dx.doi.org/10.1016/j.jmb.2023.168317 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!