Skin wound healing is a dynamic and complex process that involves multiple physiological and cellular events. Grape seed proanthocyanidins (GSP) have strong anti-oxidation and elimination of oxygen free radicals, and have been shown to significantly promote wound healing, but the underlying mechanism remains unclear. Studies have indicated that reactive oxygen species (ROS) acts as an upstream signal to induce mitophagy, suggesting that GSP can regulate mitophagy through the signal pathway. This study aimed to investigate whether GSP regulates mitophagy by down-regulating oxidative stress to promote wound healing. In vivo, GSP treatment accelerated wound healing, granulation tissue formation, collagen deposition, and angiogenesis in mice. Moreover, GSP down-regulated ROS levels and promoted the expression of antioxidant proteins by up-regulating the expression of p-JNK/FOXO3a protein, thereby regulating the expression of mitophagy-related proteins. In vitro, 4 μg/mL GSP showed no apparent toxic effects on cells and effectively reduce the oxidative stress damage of cells induced by HO. Western blot and superoxide anion fluorescence probe further confirmed that GSP effectively reduced Dihydroethidium content and up-regulated the expression of antioxidant proteins by activation of p-JNK/FOXO3a protein expression, thereby regulating mitophagy. Taken together, the findings from in vitro and in vivo experiments provide new insights into the promotion of wound healing by GSP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.abb.2023.109790 | DOI Listing |
Cancer Cell Int
January 2025
Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
Background: Tumor microenvironment (TME) plays a crucial role in tumor growth and metastasis. Exploring biomarkers that are significantly associated with TME can help guide individualized treatment of patients.
Methods: We analyzed the expression and survival of P4HB in pan-cancer through the TCGA database, and verified the protein level of P4HB by the HPA database.
Cancer Cell Int
January 2025
Department of Otolaryngology, Pudong Gongli Hospital, Shanghai, 200135, China.
Background: Specific molecular mechanisms by which AURKA promoted LSCC metastasis were still unknown.
Methods: Bioinformatic analysis was performed the relationship between TRIM28 and LSCC. Immunohistochemistry, Co-IP assay, Rt-PCR and Western Blot were used to examine the expression of related molecular.
Int J Biol Macromol
January 2025
School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea. Electronic address:
Tissue engineering offers an alternative approach to developing biological substitutes that restore, maintain, or enhance tissue functionality by integrating principles from medicine, biology, and engineering. In this context, biopolymer-based electrospun nanofibers have emerged as attractive platforms due to their superior physicochemical properties, including excellent biocompatibility, non-toxicity, and desirable biodegradability, compared to synthetic polymers. Considerable efforts have been dedicated to developing suitable substitutes for various biomedical applications, with electrospinning receiving considerable attention as a versatile technique for fabricating nanofibrous platforms.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China. Electronic address:
Dihydrotanshinone I (DHT) is an active ingredient derived from Salvia miltiorrhiza. Previous studies have demonstrated that DHT can improve cardiac function in rats with myocardial ischemia-reperfusion injury (IR). However, the mechanism by which DHT improves myocardial injury in rats still requires further research.
View Article and Find Full Text PDFInt J Surg Case Rep
January 2025
Urology Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Italy.
Introduction: Hyperthermic intraperitoneal chemotherapy (HIPEC) is a current treatment option for peritoneal carcinosis (PC) after cytoreductive surgery (CRS). Genital skin alterations are rare complications reported variously after HIPEC using Mitomycin-C.
Presentation Of Case: A 42-year-old man with a diagnosis of stage IV colorectal cancer underwent CRS and HIPEC using mitomycin-C.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!