Verticillium wilt of cotton is a very serious soil-borne disease and there is no effective control method. The mechanism of Gossypium hirsutum thaumatin-like protein 1(GhTLP1) in upland cotton regulating Verticillium wilt resistance has been an uncovered research approach. GhTLP1 is mainly localized in the cell wall. Overexpression of GhTLP1 significantly enhanced Arabidopsis plants resistance to Verticillium dahliae, while its homologous mutant tlp1 in Arabidopsis was more susceptible to the pathogen, and the heterologous complement line (EC) recovered resistance to V. dahliae. GhTLP1 responds to jasmonate acid (JA) and abscisic acid (ABA) hormones and regulates mitogen-activated protein kinase (MAPK) signaling pathway-plant pathway to enhance Arabidopsis plants resistance to V. dahliae. Silencing GhTLP1 resulted decrease in cotton plants resistance to V. dahliae. Moreover, the mutation of GhTLP1 at site Tyr97 and Tyr199 with the phosphorylation also decreased plant resistance to V. dahliae. Therefore, GhTLP1 phosphorylation was observed important in cotton plants against V. dahliae. Further analysis demonstrated that GhTLP1 interacted with gossypium hirsutum laccase 14 (GhLAC14) to enhance plants resistance to V. dahliae. Silencing GhLAC14 resulted decrease in cotton plants resistance to V. dahliae. Here, we propose that GhTLP1 is a potential molecular target for improving resistance to Verticillium wilt in cotton.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.127388 | DOI Listing |
Int J Mol Sci
December 2024
College of Agricultural, Tarim University, Alar 843300, China.
wilt (VW) caused by (Vd) is a devastating fungal cotton disease characterized by high pathogenicity, widespread distribution, and frequent variation. It leads to significant losses in both the yield and quality of cotton. Identifying key non-synonymous single nucleotide polymorphism (SNP) markers and crucial genes associated with VW resistance in and , and subsequently breeding new disease-resistant varieties, are essential for VW management.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
The Key Laboratory of Oasis Eco-Agriculture, Agriculture College, Shihezi University, Shihezi 832000, China.
is a soil-borne phytopathogenic fungus causing destructive Verticillium wilt disease that greatly threats cotton production worldwide. The mechanism of cotton resistance to Verticillium wilt is very complex and requires further research. In this study, RNA-sequencing was used to investigate the defense responses of cotton leaves using varieties resistant (Zhongzhimian 2, or Z2) or susceptible (Xinluzao 7, or X7) to .
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010010, China.
, previously classified in the genus until 2007, is an attenuated pathogen known to provide cross-protection against wilt in various crops. To investigate the potential mechanisms underlying its reduced virulence, we conducted genome sequencing, annotation, and a comparative genome analysis of GnVn.1 (GnVn.
View Article and Find Full Text PDFPlant Mol Biol
December 2024
State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, 450001, China.
In the past decades, cyclic nucleotide-gated ion channels (CNGCs) have been extensively studied in diploid species Arabidopsis thaliana. However, the functional diversification of CNGCs in crop plants, mostly polyploid, remains poorly understood. In allotetraploid Upland cotton (Gossypium hirsutum), GhCNGC31 is one of the multiple orthologs of AtCNGC2, being present in the plasma membrane, capable of interacting with itself and binding to calmodulins and cyclic nucleotides.
View Article and Find Full Text PDFPlant Sci
December 2024
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co-sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China. Electronic address:
Verticillium wilt (VW), a fungal disease caused by Verticillium dahliae (Vd), is one of the most destructive threats to cotton production. Moreover, widely cultivated upland cotton (Gossypium hirsutum, 2n = 4x = AADD = 52) often demonstrates low resistance to Vd. In contrast, G.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!