The joint use of multiple drugs can result in adverse drug-drug interactions (DDIs) and side effects that harm the body. Accurate identification of DDIs is crucial for avoiding accidental drug side effects and understanding potential mechanisms underlying DDIs. Several computational methods have been proposed for multi-type DDI prediction, but most rely on the similarity profiles of drugs as the drug feature vectors, which may result in information leakage and overoptimistic performance when predicting interactions between new drugs. To address this issue, we propose a novel method, MATT-DDI, for predicting multi-type DDIs based on the original feature vectors of drugs and multiple attention mechanisms. MATT-DDI consists of three main modules: the top k most similar drug pair selection module, heterogeneous attention mechanism module and multi‑type DDI prediction module. Firstly, based on the feature vector of the input drug pair (IDP), k drug pairs that are most similar to the input drug pair from the training dataset are selected according to cosine similarity between drug pairs. Then, the vectors of k selected drug pairs are averaged to obtain a new drug pair (NDP). Next, IDP and NDP are fed into heterogeneous attention modules, including scaled dot product attention and bilinear attention, to extract latent feature vectors. Finally, these latent feature vectors are taken as input of the classification module to predict DDI types. We evaluated MATT-DDI on three different tasks. The experimental results show that MATT-DDI provides better or comparable performance compared to several state-of-the-art methods, and its feasibility is supported by case studies. MATT-DDI is a robust model for predicting multi-type DDIs with excellent performance and no information leakage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymeth.2023.10.007 | DOI Listing |
Data Brief
June 2024
Joint Research Center, European Commission, Ispra, Italy.
Urban focused semantically segmented datasets (e.g. ADE20k or CoCo) have been crucial in boosting research and applications in urban areas by providing rich sources of delineated objects in Street View Images (SVI).
View Article and Find Full Text PDFCureus
December 2024
Department of Medicine, Medical Teaching Institution (MTI) Hayatabad Medical Complex, Peshawar, PAK.
Background Chronic diseases such as chronic kidney disease (CKD), chronic liver disease (CLD), tuberculosis (TB), dementia, and heart disease are global health concerns of significant importance, representing major causes of morbidity and mortality worldwide. Early diagnosis and interventions are critical to improve patient outcomes and reduce healthcare costs. Methods This prospective observational study analyzed clinical data from 270 patients (calculated using G*Power 3.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China.
Odontocetes are capable of dynamically changing their echolocation clicks to efficiently detect targets, and learning their clicking strategy can facilitate the design of man-made detecting signals. In this study, we developed deep convolutional generative adversarial networks guided by an acoustic feature vector (AF-DCGANs) to synthesize narrowband clicks of the finless porpoise (Neophocaena phocaenoides sunameri) and broadband clicks of the bottlenose dolphins (Tursiops truncatus). The average short-time objective intelligibility (STOI), spectral correlation coefficient (Spe-CORR), waveform correlation coefficient (Wave-CORR), and dynamic time warping distance (DTW-Distance) of the synthetic clicks were 0.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Epidemiology and Biostatistics, Faculty of Medicine, and Health Sciences, Stellenbosch University, Cape Town, South Africa.
South Africa was the most affected country in Africa by the coronavirus disease 2019 (COVID-19) pandemic, where over 4 million confirmed cases of COVID-19 and over 102,000 deaths have been recorded since 2019. Aside from clinical methods, artificial intelligence (AI)-based solutions such as machine learning (ML) models have been employed in treating COVID-19 cases. However, limited application of AI for COVID-19 in Africa has been reported in the literature.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Electronics and Communication Engineering, Rajiv Gandhi University, Rono Hills, Doimukh, ITANAGAR, Itanagar, Arunachal Pradesh, 791112, INDIA.
Accurate detection of cardiac arrhythmias is crucial for preventing premature deaths. The current study employs a dual-stage Discrete Wavelet Transform (DWT) and a median filter to eliminate noise from ECG signals. Subsequently, ECG signals are segmented, and QRS regions are extracted for further preprocessing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!