Gas chromatography-flame ionization detector for sweat based COVID-19 screening.

Anal Chim Acta

Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand. Electronic address:

Published: November 2023

Simple approach for rapid screening of corona virus disease 2019 (COVID-19) has been developed. This applied gas chromatography-flame ionization detector (GC-FID) analyzing the potential compound marker in sweat samples obtained from COVID-19 positive and negative volunteers in Bangkok, Thailand. The samples were collected by using cotton rods for 15 min, heated at 90 °C for 5 min, and the volatile compounds in the headspace (HS) were injected (5.00 mL) at 150 °C and separated within 13.7 min. The marker peak was tentatively identified as p-cymene by the authentic standard injection and comparison with the GC-mass spectrometry (GC-MS) and comprehensive two-dimensional GC (GC × GC)-MS analysis. Possible mechanisms for the presence of p-cymene were proposed. The marker peak area thresholds were then varied and optimized via construction of the receiver operating characteristic (ROC) curve. With the optimum threshold, the established method offered the accuracy, sensitivity and specificity of 96 %. This method was insignificantly affected (p-value >0.05) by genders, body mass indices, ages, and use of deodorants as well as the p-cymene containing food. However, the performance could be affected by the population with personal hygiene or experiencing the microbiomes producing p-cymene.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2023.341878DOI Listing

Publication Analysis

Top Keywords

gas chromatography-flame
8
chromatography-flame ionization
8
ionization detector
8
marker peak
8
detector sweat
4
sweat based
4
based covid-19
4
covid-19 screening
4
screening simple
4
simple approach
4

Similar Publications

This study investigated the chemical composition of essential oil from Tetrapanax papyrifer and evaluated its antioxidant and anti-α-glucosidase activity. A total of 61 essential oil compounds from T. papyrifer were identified by gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detector (GC-FID).

View Article and Find Full Text PDF

Fatty acids (FAs) are biochemical components of food, essential for human health due to their numerous biological functions. However, many of then if consumed in excess can trigger disfunctions/illness. Therefore, analytical methods, such as gas chromatography (GC-FID) are essential for the accurate identification and quantification of FAs, playing an important role in food safety and quality assessment.

View Article and Find Full Text PDF

Nicotine and Vape: Drugs of the Same Profile Flock Together.

J Biochem Mol Toxicol

December 2024

Doctoral Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), CEP, Porto Alegre, Brazil.

Smoking, a major behavioral health burden, causes preventable and premature deaths globally. Nicotine, the addictive component present in tobacco products and Electronic cigarettes (E-cigarettes, vape), can bind to nicotinic acetylcholine receptors in the brain to trigger a dopamine release that reinforces smoking. Despite the widespread usage of nicotine, its mechanisms of toxicity, particularly in e-cigarettes, are poorly understood.

View Article and Find Full Text PDF

Eucalyptus essential oil is widely valued for its therapeutic properties and extensive commercial applications, with its chemical composition significantly influenced by species variety, geographical origin, and environmental conditions. This study aims to develop a reliable method for identifying the geographical origin and variety of eucalyptus oil samples through the application of advanced analytical techniques combined with chemometric methods. Essential oils from Eucalyptus globulus and Eucalyptus camaldulensis were analyzed using Gas Chromatography-Flame Ionization Detection (GC-FID) and Fourier Transform Infrared (FTIR) Spectroscopy.

View Article and Find Full Text PDF
Article Synopsis
  • This study explores the effectiveness of a two-dimensional gas chromatography-flame ionization detection (GC×GC-FID) method for identifying 12 psychoactive drugs in urine, including popular substances like cocaine and methamphetamine.
  • The method achieved clear separation of these drugs within 8 minutes using a specific column setup, demonstrating better results than traditional configurations.
  • Validation showed high accuracy and precision for drug detection, with very low detection limits and effective recovery rates, proving its usefulness for quick forensic drug testing.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!