Using neural networks to calibrate agent based models enables improved regional evidence for vaccine strategy and policy.

Vaccine

Mayo Clinic Department of Medicine, Rochester, MN, United States; Mayo Clinic Division of Epidemiology, Rochester, MN, United States; Mayo Clinic Healthcare & Epidemiology AI Lab (HEAL), United States. Electronic address:

Published: November 2023

Distribution and administration strategy are critical to successful population immunization efforts. Agent-based modeling (ABM) can reflect the complexity of real-world populations and can experimentally evaluate vaccine strategy and policy. However, ABMs historically have been limited in their time-to-development, long runtime, and difficulty calibrating. Our team had several technical advances in the development of our GradABMs: a novel class of scalable, fast and differentiable simulations. GradABMs can simulate million-size populations in a few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous sources. This allows for rapid and real-world sensitivity analyses. Our first epidemiological GradABM (EpiABMv1) enabled simulation interventions over real million-scale populations and was used in vaccine strategy and policy during the COVID-19 pandemic. Literature suggests decisions aided by evidence from these models saved thousands of lives. Our most recent model (EpiABMv2) extends EpiABMv1 to allow improved regional calibration using deep neural networks to incorporate local population data, and in some cases different policy recommendations versus our prior models. This is an important advance for our model to be more effective at vaccine strategy and policy decisions at the local public health level.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2023.08.060DOI Listing

Publication Analysis

Top Keywords

vaccine strategy
16
strategy policy
16
neural networks
12
improved regional
8
deep neural
8
strategy
5
policy
5
networks calibrate
4
calibrate agent
4
agent based
4

Similar Publications

The common cold coronaviruses are a source of ongoing morbidity and mortality particularly among elderly and immunocompromised individuals. While cross-reactive immune responses against multiple coronaviruses have been described following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination, it remains unclear if these confer any degree of cross-protection against the common cold coronaviruses. A recombinant fowl adenovirus vaccine expressing the SARS-CoV-2 spike protein (FAdV-9-S19) was generated, and protection from SARS-CoV-2 challenge was shown in K18-hACE2 mice.

View Article and Find Full Text PDF

Hepatitis B (Hep B) remains a critical public health issue globally, particularly in Tibet, where vaccination rates and influencing factors among college students are yet understudied. This study applies a cross-sectional design to investigate the Hep B vaccination rate among 1,126 college students in Tibet and utilizes the expanded theory of planned behavior (ETPB) to identify vaccination behavior intention (BI) and vaccination behavior (VB). Stratified cluster sampling across three universities was used to assess behavioral attitudes (BA), subjective norms (SN), perceived behavioral control (PBC), past vaccination history (PVH) and vaccination knowledge (VK), and used structural equation modeling (SEM) for model validation and multi-group comparison.

View Article and Find Full Text PDF

A total of 5011 adult volunteers attending vaccination centers in different regions of Colombia were enrolled in a 1-year prospective observational cohort study to evaluate the immunogenicity and effectiveness of SARS-CoV-2-based vaccines as part of a National Vaccine Program established to contain the COVID-19 pandemic. Following informed consent, 5,011 participants underwent a sociodemographic survey and PCR testing to assess SARS-CoV-2 infection. Blood samples were collected, and serum fractions were obtained from a participant subsample (n = 3441) at six-time points to assess virus-specific IgG responses to the Spike protein, its Receptor Binding Domain, and the Nucleoprotein by ELISA.

View Article and Find Full Text PDF

Therapeutic hurdles persist in the fight against lung cancer, although it is a leading cause of cancer-related deaths worldwide. Results are still not up to par, even with the best efforts of conventional medicine, thus new avenues of investigation are required. Examining how immunotherapy, precision medicine, and AI are being used to manage lung cancer, this review shows how these tools can change the game for patients and increase their chances of survival.

View Article and Find Full Text PDF

Currently, no approved antiviral drugs target dengue virus (DENV) infection, leaving treatment reliant on supportive care. DENV vaccine efficacy varies depending on the vaccine type, the circulating serotype, and vaccine coverage. We investigated defective interfering particles (DIPs) and lipid nanoparticles (LNPs) to deliver DI290, an anti-DENV DI RNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!