A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A framework of myocardial bridge detection with x-ray angiography sequence. | LitMetric

A framework of myocardial bridge detection with x-ray angiography sequence.

Biomed Eng Online

The School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Nankai District, No.92 Weijin Road, Tianjin, China.

Published: October 2023

Background: Myocardial bridges are congenital anatomical abnormalities in which myocardium covers a segment of coronary arteries, leading to stenocardia, myocardial ischemia, and sudden cardiac death in severe cases. However, automatic diagnosis of myocardial bridge presents significant challenges.

Method: A novel framework of myocardial bridge detection with x-ray angiography sequence is proposed, which can realize automatic detection of vessel stenosis and myocardial bridge. Firstly, we employ a novel neural network model for coronary vessel segmentation, which consists of both CNNs and transformer structures to effectively extract both local and global information of the vessels. Secondly, we describe the vessel segment information, establish the vessel tree in the image, and fuse the vessel tree information between sequences. Finally, based on vessel stenosis detection, we realize automatic detection of the myocardial bridge by querying the blood vessels between the image sequence information.

Results: In experiment, we evaluate the segmentation results using two metrics, Dice and ASD, and achieve scores of 0.917 and 1.39, respectively. In the stenosis detection, we achieve an average accuracy rate of 92.7% in stenosis detection among 262 stenoses. In multi-frame image processing, vessels in different frames can be well-matched, and the accuracy of myocardial bridge detection achieves 75%.

Conclusions: Our experimental results demonstrate that the algorithm can automatically detect stenosis and myocardial bridge, providing a new idea for subsequent automatic diagnosis of coronary vessels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10585781PMC
http://dx.doi.org/10.1186/s12938-023-01163-2DOI Listing

Publication Analysis

Top Keywords

myocardial bridge
28
bridge detection
12
stenosis detection
12
framework myocardial
8
detection
8
detection x-ray
8
x-ray angiography
8
angiography sequence
8
myocardial
8
automatic diagnosis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!